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0. Introduction to R

We assume that your are reading this supplement to An Introduction to Biostatis-
tics because your instructor has decided to use R as the statistical software for
your course or because you are a very motivated student and want to learn both
elementary statistics and R at the same time. This supplement does not provide
screen shots of the program or lots of help installing R. This is better done by your
instructor or TA who can actually demonstrate the process.

What is R?

R is a language and environment for statistical computing and graphics. It is avail-
able as Free Software under the terms of the Free Software Foundation’s GNU
General Public License in source code form. It compiles and runs on a wide vari-
ety of operating systems such as Windows, MacOS, and most UNIX platforms and
similar systems (including FreeBSD and Linux). While there are many statistical
software programs available, we have chosen to provide this supplement to An
Introduction to Biostatistics using R because it is both powerful and free.

To learn much more about R, go to http://www.r-project.org. Note: If you are
reading this supplement either online or as a pdf on your own computer or tablet,
just click on any link to be redirected to the appropriate web page.

Installation of R

If you don’t already have R on your computer or have access to a copy of R through
your institution, then you can download R for free by going to http://www.

r-project.org. Follow the instructions. We assume your instructor or TA or a
friend will help you with this. There are useful youtube videos available, as well.

R Resources and Getting Started

There are several great free online resources to help you learn more about R. Start
with the R-project homepage at http://www.r-project.org. Here are a few others
that are written for those just beginning to use R.

1. John Verzani’s http://cran.r-project.org/doc/contrib/Verzani-SimpleR.

pdf is a 113 page introduction to R that is well worth downloading.

2. The web pages “Software Resources for R” starting at http://courses.statistics.
com/software/R/Rhome.htm are useful, especially the Getting Started link,
http://courses.statistics.com/software/R/R00.htm.

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://courses.statistics.com/software/R/Rhome.htm
http://courses.statistics.com/software/R/Rhome.htm
http://courses.statistics.com/software/R/R00.htm
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3. A brief “R: A self-learn tutorial” may be found at http://www.nceas.ucsb.edu/
files/scicomp/Dloads/RProgramming/BestFirstRTutorial.pdf.

4. A series of tutorials by Google Developers consisting of 21 short videos (total
length, one hour and seven minutes) can be found at https://www.youtube.
com/playlist?list=PLOU2XLYxmsIK9qQfztXeybpHvru-TrqAP. You may wish to
watch the first few for tips on getting started. Return to the later videos as you
gain more experience with R.

5. Kelly Black’s extensive online “R Tutorial” can be found at http://www.cyclismo.
org/tutorial/R/index.html.

6. Another 100-page introduction to R by Germán Rodíguez can be found at http:
//data.princeton.edu/R/introducingR.pdf.

7. For a very short introduction to R and the R-Studio graphical interface see
http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf.
To keep things simple, we will not assume that you are using R-Studio.

There are many other introductions to R available online and more being writ-
ten all the time. Make use of them.

Starting R

Assuming that you have installed R and that you have started the program, you
are faced with some text similar to

R version 3.1.1 (2014-07-10) -- "Sock it to Me"

Copyright (C) 2014 The R Foundation for Statistical Computing

Platform: x86_64-apple-darwin10.8.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

The > is called the prompt. In the examples that follow, the prompt is not some-
thing you type. Rather, it is the symbol that R uses to indicate that it is waiting for
you to type in the next command. If a command line is too long to fit on a single
line a + is automatically inserted by R to indicate the continuation of the prompt
on the next line. We will remind you about this when it first occurs in these notes.

http://www.nceas.ucsb.edu/files/scicomp/Dloads/RProgramming/BestFirstRTutorial.pdf
http://www.nceas.ucsb.edu/files/scicomp/Dloads/RProgramming/BestFirstRTutorial.pdf
https://www.youtube.com/playlist?list=PLOU2XLYxmsIK9qQfztXeybpHvru-TrqAP
https://www.youtube.com/playlist?list=PLOU2XLYxmsIK9qQfztXeybpHvru-TrqAP
http://www.cyclismo.org/tutorial/R/index.html
http://www.cyclismo.org/tutorial/R/index.html
http://data.princeton.edu/R/introducingR.pdf
http://data.princeton.edu/R/introducingR.pdf
http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf
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One can do basic arithmetic in R. For example, we can add 4 and 5 in the obvi-
ous way. Be sure to hit “Return” after typing.

> 4 + 5

## [1] 9

The lightly shaded background above and the distinctive typeface distinguish R

input and output from the explanatory text surrounding it. Material following the
prompt > is what we typed. Lines that begin with two hashtags ## are the output
that results from an R command. If you are looking at a color version of these
materials, you will also see that the various types of R input are color coded.

The other basic mathematical operations work the same way: use - for subtrac-
tion, * for multiplication, and / for division. R also has many built in functions.
For example, to find the square root of 3, use the sqrt( ) function:

> sqrt(3)

## [1] 1.73205

Creating and Accessing Data Sets

Most statistical calculations require a data set containing several numbers. There
are several ways to enter a data set. If the data consist of only a few numbers, the
c( ) function can be used. This function combines or concatenates terms. Suppose
the heights of ten male faculty were recorded in cm: 171, 177, 178, 175, 202, 180,
192, 182, 195, and 190. These data can be entered into a single object (or variable)
called height. To do so, type

> height <- c(171, 177, 178, 175, 202, 180, 192, 182, 195, 190)

> height

## [1] 171 177 178 175 202 180 192 182 195 190

There are a few things to notice.

• All of the values were assigned to a single object called height. Try to make the
names of your objects meaningful in the context of the problem or question. We
could have simply called the data x, but if we looked back at it later we might
not know to what x referred.

• The assignment operator is an “arrow” formed by typing <-. The arrow indi-
cates that we are assigning the values 171, 177, 178, 175, 202, 180, 192, 182, 195,
and 190 to the R object (or variable) height.

• The values of height did not automatically print out. However, typing the name
of the object will cause its value(s) to be printed.

• The [1] indicates that the output is a vector (a sequence of numbers or other
objects) and that the first value printed on the row is actually the first value in
height.
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Many basic functions can be applied directly to entire data sets. For example, to
take the square root of each height use

> sqrt(height)

## [1] 13.0767 13.3041 13.3417 13.2288 14.2127 13.4164 13.8564 13.4907

## [9] 13.9642 13.7840

Notice that when the values of a function are not stored in a variable, the result
is immediately printed. In the second line of the output above, the leading [9]

indicates that the first entry on this line is the ninth element of sqrt(height).
There are 2.54 cm per inch, so to convert the heights to inches, use

> height/2.54 # height in inches

## [1] 67.3228 69.6850 70.0787 68.8976 79.5276 70.8661 75.5906 71.6535

## [9] 76.7717 74.8031

We will often put comments by the commands. These are indicated by a single
hashtag #. They are a convenient way to make notes in your computations. Any-
thing following a hashtag, for example # height in inches above, is ignored by
R.

To compute the average or mean of the heights above, add all of the heights and
divide this sum by the number of heights. In R use the sum( ) function to add all
of the entries in a vector.

> sum(height)

## [1] 1842

To find the number of entries in a vector, use the length( ) function.

> length(height)

## [1] 10

So the mean height is

> meanHt <- sum(height)/length(height)

> meanHt

## [1] 184.2

Note that value of the mean height has been put into the variable meanHt so that
it can be re-used without having to recalculate the value. To square each of the
individual heights use

> height^2

## [1] 29241 31329 31684 30625 40804 32400 36864 33124 38025 36100

Order of operations is important. Compare the sum of these squared heights to
the square of the sum of the heights. Note the placement of the squaring opera-
tion.
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> sum(height^2) # sum of the squared heights

## [1] 340196

> sum(height)^2 # square of the sum of the heights

## [1] 3392964

> (sum(height))^2 # square of the sum of the heights, again

## [1] 3392964

The two numbers are different. The extra set of parentheses in the third com-
mand above clarifies the order of operations: sum, then square.

More complicated calculations may be formed from basic calculations. For
example, the corrected sum of squares is defined as

n

∑
i=1

(Xi − X)2.

Recalling that we calculated the meanHt earlier, the corrected sum of squares for the
height data can be calculated.

> sum((height-meanHt)^2)

## [1] 899.6

It is easy to carry out basic descriptive statistical operations on data using the
many functions built into R as illustrated below.

> median(height) # the median height

## [1] 181

> min(height) # the minimum height

## [1] 171

> max(height) # the maximum height

## [1] 202

Suppose that the arm spans of these same ten faculty were also measured (in
the same order) and that the data were entered into R.

> span <- c(173, 182, 182, 178, 202, 188, 198, 185, 193, 186) # in cm

> span

## [1] 173 182 182 178 202 188 198 185 193 186

To determine the difference between the arm span and height for each person
by subtracting height from span, use
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> difference <- span - height

> difference

## [1] 2 5 4 3 0 8 6 3 -2 -4

It is often convenient to combine data sets that are related. To combine span,
height, and difference into a single table, put the data into a so-called data frame
(which we name faculty.dat) using the data.frame( ) command.

> faculty.dat <- data.frame(span, height, difference)

> faculty.dat

## span height difference

## 1 173 171 2

## 2 182 177 5

## 3 182 178 4

## 4 178 175 3

## 5 202 202 0

## 6 188 180 8

## 7 198 192 6

## 8 185 182 3

## 9 193 195 -2

## 10 186 190 -4

Unless otherwise specified, the column names are the variable names. To add a
column for the ratio of span to height, create a new column using faculty.dat["ratio"]

and put span/height into this column

> faculty.dat["ratio"] <- span/height # note the quotes

> faculty.dat

## span height difference ratio

## 1 173 171 2 1.011696

## 2 182 177 5 1.028249

## 3 182 178 4 1.022472

## 4 178 175 3 1.017143

## 5 202 202 0 1.000000

## 6 188 180 8 1.044444

## 7 198 192 6 1.031250

## 8 185 182 3 1.016484

## 9 193 195 -2 0.989744

## 10 186 190 -4 0.978947

The various columns of faculty.dat can now be referenced by using their
names. For example, the ratio column is referenced by using the data frame name
followed by a $ followed by the column name: faculty.dat$ratio. To determine
the mean of these data, use

> sum(faculty.dat$ratio)/length(faculty.dat$ratio)

## [1] 1.01404
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Accessing Online Data Files

One of the neat things about R is the ability to access and analyze (large) online
data files without ever downloading them to your own computer. With this in
mind, we have created online data files for all of the examples and problems in
An Introduction to Biostatistics that require them. You can download these files to
use with R or any other statistical software, or in R you may access the text files
from online and do the necessary analysis without ever copying them to your own
computer.

The data files for An Introduction to Biostatistics use the following naming con-
ventions.

• The data file for Example n of Chapter XY is referred to as http://waveland.

com/Glover-Mitchell/ExampleXY-n.txt. For instance the data for Example 2 of
Chapter 1 is located at http://waveland.com/Glover-Mitchell/Example01-2.
txt. Note the two-digit chapter reference and the dash between the chapter
number and the example number.

• The data file for Problem n of Chapter XY is referred to as http://waveland.

com/Glover-Mitchell/ProblemXY-n.txt. For instance the data for Problem 5 of
Chapter 1 is located at http://waveland.com/Glover-Mitchell/Problem01-5.
txt.

The data are in columns. Each column has a brief text “header” that describes
the data. If a file contains multiple columns, the columns are separated by tabs. If
you are reading this on your computer, try clicking on the links to be taken to the
actual data files.

EXAMPLE 0.1. To read the tree data in http://waveland.com/Glover-Mitchell/Example01-2.

txt and store the result in a table in R, use the read.table( ) command. Since every data
file for our text has a header, in the read.table( ) command set header = TRUE. The word
TRUE must be in capital letters. As a shortcut, one can also use header = T. To list the entire
table, enter the table’s name. Our convention is to name the data table data.Ex01.2. While
this is a long name, it will help keep straight the current problem of interest. You are likely
to use shorter names. Nonetheless, try to make them descriptive.

> data.Ex01.2 <- read.table("http://waveland.com/Glover-Mitchell/Example01-2.txt",

+ header = TRUE)

> data.Ex01.2

## CCH

## 1 17

## 2 19

## 3 31

## 4 39

## 5 48

## 6 56

## 7 68

## 8 73

## 9 73

## 10 75

## 11 80

## 12 122

Notice the + on the second line above. This is an instance where the entire command
does not fit on a single line. The + indicates that the command continues to the next line.

http://waveland.com/Glover-Mitchell/ExampleXY-n.txt
http://waveland.com/Glover-Mitchell/ExampleXY-n.txt
http://waveland.com/Glover-Mitchell/Example01-2.txt
http://waveland.com/Glover-Mitchell/Example01-2.txt
http://waveland.com/Glover-Mitchell/ProblemXY-n.txt
http://waveland.com/Glover-Mitchell/ProblemXY-n.txt
http://waveland.com/Glover-Mitchell/Problem01-5.txt
http://waveland.com/Glover-Mitchell/Problem01-5.txt
http://waveland.com/Glover-Mitchell/Example01-2.txt
http://waveland.com/Glover-Mitchell/Example01-2.txt
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This is not something that you type and it certainly does not mean addition in this context.
If you hit return before a command is finished, R automatically prints + to indicate that the
command prompt has continued.

In this example, the header is CCH, which stands for circumference at chest height. The
standard R functions can now be applied to these data. For example, the mean and cor-
rected sum of squares for CCH are found in the usual way. (Remember: A column of a data
frame is referenced by using the data frame name followed by a $ followed by the column
name.)

> meanCCH <-sum(data.Ex01.2$CCH)/length(data.Ex01.2$CCH)

> meanCCH

## [1] 58.4167

> sum((data.Ex01.2$CCH - meanCCH)^2) # corrected sum of squares

## [1] 9812.92

For larger data tables, it is convenient to list only the first and/or last few rows of a table.
This is done using the head( ) and tail( ) commands. The syntax is head(tableName),
which by default lists the first six rows of the table, or head(tableName, n = k) to list the
first k rows. Similarly for tail( ). For example,

> head(data.Ex01.2$CCH)

## [1] 17 19 31 39 48 56

> tail(data.Ex01.2$CCH, n = 2)

## [1] 80 122

Help and Quitting

Various types of help are available. Within R you may wish to use the following
commands

> help.start() # general help, starts up your web browser

> help(foo) # help about function 'foo'

> example(foo) # show an example of function 'foo'

That’s enough to get you started. Make up a few data sets of your own and try
some calculations. Remember to quit R use q().

Command Summary

A little more information about each command used in this introduction is pro-
vided here. Most commands have additional options which can be found online
using a simple web search, or by consulting one of the references listed earlier, or
by using help in R.

c( )

Details: The simplest way to enter small data sets in R is with the c( ) com-
mand. This function combines or concatenates terms. To put the values 1, 4, 4,
5, 6 into the data set x, use
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> x <- c(1, 4, 4, 5, 6)

> x

## [1] 1 4 4 5 6

Consecutive numbers such as 3, 4, 5, 6, 7 can be entered into a data set y using

> y <- c(3:7)

> y

## [1] 3 4 5 6 7

Even text data can be entered in this way. The names “Tom”, “Maria”, “Kem-
berlei”, “Jordan”, and “Chequira” can be put into the data set students using

> students <- c("Tom", "Maria", "Keberlei", "Jordan", "Chequira")

> students

## [1] "Tom" "Maria" "Keberlei" "Jordan" "Chequira"

Note the required quotation marks around each of the text terms.

data.frame(x, y, ...)

Details: data.frame( ) is used to put related data x, y, ... into a single table.
The data sets must have the same length. To put the variables x and y from the
entry above into myTable use

> myTable <- data.frame(x,y)

> myTable

## x y

## 1 1 3

## 2 4 4

## 3 4 5

## 4 5 6

## 5 6 7

Notice that the variable names are the column names. Suppose that x and y

actually represented the number of A’s and B’s of the students listed earlier.
We can put all this information and the corresponding GPA’s (assuming these
students earned only A’s and B’s) into a single table. Notice how the columns
are renamed.

> studentRecord <- data.frame(Name = students, A = x, B = y,

+ GPA = (4*x + 3*y)/(x + y))

> # Name, A, B, and GPA will be the column names with

> # corresponding data from the vectors students, x, and y.

> # The last column, GPA, is calculated from x and y.

> studentRecord
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## Name A B GPA

## 1 Tom 1 3 3.25000

## 2 Maria 4 4 3.50000

## 3 Keberlei 4 5 3.44444

## 4 Jordan 5 6 3.45455

## 5 Chequira 6 7 3.46154

The various columns of data in a table can be addressed as variables: Use the
data frame name followed by a $ followed by the column name. In the table
above, GPA is defined only within the data frame studentRecord, so it would be
addressed as studentRecord$GPA. For example, to find the maximum GPA, use

> max(studentRecord$GPA)

## [1] 3.5

head(tableName), tail(tableName)

Details: These commands list the first or last six rows of a table. Use head(tableName,

n = k) to list just the first k rows. Similarly for tail( ). See the read.table( )

entry for examples.

length(x)

Details: For an vector or list x, this function returns its length, that is, the num-
ber of entries in the object.

read.table("pathName", header = FALSE)

Details: This command is used to read data files that reside on the internet
or on your own computer. By default, header is set to FALSE. All files for our
text contain headers, so set header = TRUE when reading them. The pathname
(address) must be in quotation marks.

EXAMPLE 0.2. The file http://waveland.com/Glover-Mitchell/Example00-2.txt con-
tains the monthly rainfall records (in mm) from 1921 to 1998 at the Eagle Farm Race-
course in Brisbane, Australia. (Source: http://www.bom.gov.au/climate/data/.) This
table is large so it makes sense to list just the first and last few rows of the table.

> data.Ex00.2 <- read.table("http://waveland.com/Glover-Mitchell/Example00-2.txt",

+ header = TRUE)

> head(data.Ex00.2, n = 3) # display just the first 3 rows

## Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

## 1 1921 129.9 16.9 194.7 203.0 19.8 197.9 167.7 4.3 44.8 28.4 57.2 226.4

## 2 1922 67.0 230.1 26.9 8.4 54.0 39.6 118.1 3.4 66.6 37.2 51.9 114.4

## 3 1923 46.7 21.4 87.1 192.4 9.1 73.9 64.5 24.4 36.1 10.9 47.1 62.5

## Annual

## 1 1291.0

## 2 817.6

## 3 676.1

> tail(data.Ex00.2) # display the last 6 rows by default

http://waveland.com/Glover-Mitchell/Example00-2.txt
http://www.bom.gov.au/climate/data/
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## Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

## 73 1993 71.0 44.4 83.1 12.8 22.0 6.2 66.6 41.8 55.4 65.8 77.4

## 74 1994 235.6 101.7 139.0 49.2 65.6 9.4 9.0 2.2 53.0 41.4 41.6

## 75 1995 62.8 330.4 71.3 34.8 42.6 39.4 6.0 19.8 30.8 45.4 183.8

## 76 1996 241.8 52.6 28.6 78.2 678.4 34.2 50.2 41.0 49.2 31.4 82.8

## 77 1997 117.6 54.4 49.2 7.4 209.4 27.4 32.0 2.8 45.0 141.8 114.6

## 78 1998 132.6 36.2 41.4 164.8 140.0 11.2 23.6 91.6 112.6 26.0 104.8

## Dec Annual

## 73 87.2 633.7

## 74 64.0 811.7

## 75 244.0 1111.1

## 76 117.0 1485.4

## 77 101.6 903.2

## 78 70.5 955.3

You can read files on your own computer using the same method. Create and save the
appropriate text file. In R type read.table("") and simply drag the file between the
quotation marks. The pathname should automatically appear.

read.csv("pathName.csv", header = TRUE)

Details: This command is used to read data from a spreadsheet. To use this
function, save the spreadsheet as a CSV file (comma separated values) with
name pathName.csv. The command read.csv("pathName.csv", header =

TRUE) will read the file into your R session. Note: By default, header = TRUE

in contrast to read.table( ). If there are no headers, set header = FALSE when
reading the file. The pathname (address) must be in quotation marks. See Prob-
lem 4 at the end of this chapter for an illustrative example.

sum(x), median(x), max(x), min(x)

Details: These basic statistical functions (and many others) work the same
way. To apply the function fcn( ) to the data in x use fcn(x). For example,
to find the maximum, minimum, and median Annual rainfalls, and then the
total Annual Brisbane rainfall for the data entered earlier, use

> max(data.Ex00.2$Annual) # max annual rainfall

## [1] 2203.7

> min(data.Ex00.2$Annual) # min annual rainfall

## [1] 555.1

> median(data.Ex00.2$Annual) # median annual rainfall

## [1] 1102.4

> sum(data.Ex00.2$Annual) # total rainfall for 78 years

## [1] 89166

There are more than 1,000 entries in the data file. You never had to enter them
by hand or store the file to your computer. R makes it simple to analyze such
data.
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Problems

1. Create two data vectors x and y that contain the integers 1 to 21 and −10 to 10.

(a) Add, subtract, multiply, and divide x by y. What happens when dividing?

(b) Find the mean of each data set.

(c) Find the corrected sum of squares for each data set.

(d) Find the mean of the product of x and y.

2. The data set http://waveland.com/Glover-Mitchell/Problem00-2.txt lists all cities and
villages in New York that had a population of more than 10,000 residents in 2010.

(a) How many such cities and villages are there?

(b) Find the total population of all of these cities and villages.

(c) Find the median population of these cities and villages.

(d) Find the mean population of these cities and villages.

(e) Find the corrected sum of squares for these data.

(f ) The total population of New York State was 19,378,102 at the time of the census. What
proportion of the population lived outside these cities and towns?

3. The data set http://waveland.com/Glover-Mitchell/Problem00-3.txt lists the monthly
snowfall for Buffalo, NY for each each snow season from 1940–41 to 2013–14.

(a) Read the data and determine its structure. Be careful. Data names are case sensitive.

(b) Find the median snowfall for December during this period. How does it compare to
the mean for December?

(c) Find the mean annual snowfall for this period.

(d) What were the maximum and minimum annual snowfalls for this period?

(e) How many inches of snow fell on Buffalo in this period?

(f ) Find the corrected sum of squares for the annual snowfall in this period.

(g) While writing this in mid-November, 2014 Buffalo received more than 7 feet of snow
in three days. How much snow fell in the snowiest November during the period
1940–41 to 2013–14.

4. This exercise illustrates the use of the read.csv( ) command to read data from spread-
sheets. (See the Command Summary for further details.) It also illustrates how to ana- Z CSV stands for “comma separated

values.” If you create a data table in
a spreadsheet, be sure to save in CSV
format, if you intend to analyze it with
R.

lyze data that do not reside on your own computer. The CSV file http://slantedwindows.

com/demo/iris.csv contains data for three different species of irises. The data include
sepal length and width and petal length and width.

(a) Read the file and store the result in iris.dat using

> iris.dat <- read.csv("http://slantedwindows.com/demo/iris.csv", header = TRUE)

(b) List the data. How many entries are there? What is the structure of the file?

(c) Determine the mean sepal length and the median petal width.

(d) The tapply( ) function is described in detail in Chapter 8. It is used to apply a func-
tion to groups (here, species) within a table. What is the output of the following
command:

> tapply(iris.data$petalW, iris.dat$species, mean)

(e) Determine the median for each species using tapply( ).

http://waveland.com/Glover-Mitchell/Problem00-2.txt
http://waveland.com/Glover-Mitchell/Problem00-3.txt
http://slantedwindows.com/demo/iris.csv
http://slantedwindows.com/demo/iris.csv


1. Introduction to Data Analysis

This chapter introduces some of the basic numerical and statistical functions avail-
able in R using the examples from the text An Introduction to Biostatistics (Glover
and Mitchell, Waveland Press, 2015). This guide is not a replacement for the text
where concepts are discussed and explained.

Be sure to read Chapter 0 to familiarize yourself with some of the conventions
that are used throughout this guide.

Basic Statistics

EXAMPLE 1.1. The table below gives the circumferences at chest height (CCH) (in cm) and
their corresponding depths for 15 sugar maples, Acer saccharum, measured in a forest in
southeastern Ohio. Determine the sample median.

CCH 18 21 22 29 29 36 37 38 56 59 66 70 88 93 120

Depth 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1

SOLUTION. Using the methods outlined in Chapter 0, read in the data file using the
read.table( ) command and put the result into data.Ex01.1. As mentioned previously,
header is set to TRUE because each column of data in these online files has a descriptive
header.

> data.Ex01.1 <- read.table("http://waveland.com/Glover-Mitchell/Example01-1.txt",

+ header = TRUE)

As in Example 0.1, notice the + directly above. This is an instance where an entire com-
mand does not fit on a single line. The + indicates that it continues to the next line. This is
not something that you type; if you hit return before the command is finished, R automati-
cally prints a + to indicate that the command prompt has continued.

It is useful to list the data to make sure the file has been read properly and that the data
are as expected. This is done by entering the data table’s name.

> data.Ex01.1

## CCH

## 1 18

## 2 21

## 3 22

## 4 29

## 5 29

## 6 36

## 7 37

## 8 38

## 9 56

## 10 59

## 11 66
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## 12 70

## 13 88

## 14 93

## 15 120

To determine the median use the function median( ) applied to the data table just cre-
ated. To refer to the CCH data specifically, use the name of the data table followed imme-
diately by a dollar sign $ that is then followed by the header of the column of data to be
accessed: data.Ex01.1$CCH.

> median(data.Ex01.1$CCH)

## [1] 38

The median is 38, which is the depth 8 observation. In this example it may seem silly to
find the median using R. However, when faced with a large, unordered data set this is very
useful.

EXAMPLE 1.2. The table below gives CCH (in cm) for 12 cypress pines, Callitris preissii,
measured near Brown Lake on North Stradbroke Island. Determine the median.

CCH 17 19 31 39 48 56 68 73 73 75 80 122

Depth 1 2 3 4 5 6 6 5 4 3 2 1

SOLUTION. Find the median by reading in the data and using the median function.

> data.Ex01.2 <- read.table("http://waveland.com/Glover-Mitchell/Example01-2.txt",

+ header = TRUE)

> tail(data.Ex01.2, n = 3) # list a few values

## CCH

## 10 75

## 11 80

## 12 122

> median(data.Ex01.2$CCH)

## [1] 62

EXAMPLE 1.3. The table that follows gives the weights of two samples of albacore tuna,
Thunnus alalunga (in kg). Find the means, ranges, variance, and standard deviations of both
samples.

Sample 1 Sample 2

8.9 3.1
9.6 17.0

11.2 9.9
9.4 5.1
9.9 18.0

10.9 3.8
10.4 10.0
11.0 2.9

9.7 21.2

SOLUTION. Using R, read and list the the data.

> data.Ex01.3 <- read.table("http://waveland.com/Glover-Mitchell/Example01-3.txt",

+ header = TRUE)

> data.Ex01.3
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## Sample1 Sample2

## 1 8.9 3.1

## 2 9.6 17.0

## 3 11.2 9.9

## 4 9.4 5.1

## 5 9.9 18.0

## 6 10.9 3.8

## 7 10.4 10.0

## 8 11.0 2.9

## 9 9.7 21.2

As noted in Chapter 0, the mean is computed using the sum( ) function to add all the
data values and the length( ) function to determine the number of values in each data set.

> sum(data.Ex01.3$Sample1)/length(data.Ex01.3$Sample1) # mean of sample 1

## [1] 10.1111

> sum(data.Ex01.3$Sample2)/length(data.Ex01.3$Sample2) # mean of sample 2

## [1] 10.1111

Z R Tip: When a command in R is al-
most identical to a previous command,
use the uparrow to navigate to that
previous command and then edit it as
necessary. This takes the sting out of
using long, descriptive data names.

However, R also has a built in function for this purpose, mean( ), that works like the
median( ) or sum( ) functions

> mean(data.Ex01.3$Sample1)

## [1] 10.1111

> mean(data.Ex01.3$Sample2)

## [1] 10.1111

Remember to report the means to one more significant digit than the original data. This
is simple to do by hand (here both means are equal to 10.11 kg). To demonstrate another
of R’s functions, use round( ) being sure to specify the number of digits desired after the
decimal point. Two digits are required here, so use

> round(mean(data.Ex01.3$Sample1), digits = 2)

## [1] 10.11

> round(mean(data.Ex01.3$Sample2), digits = 2)

## [1] 10.11

The difference between the largest and smallest observations in a group of data is called
the range. In R, applying the range( ) function to each data set

> range(data.Ex01.3$Sample1)

## [1] 8.9 11.2

> range(data.Ex01.3$Sample2)

## [1] 2.9 21.2

yields the minimum and maximum values of the data, which is another reasonable way to
define the range, but not what we expected. To find the range as we have defined it, use R’s
max( ) and min( ) functions.
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> max(data.Ex01.3$Sample1) - min(data.Ex01.3$Sample1) # range

## [1] 2.3

> max(data.Ex01.3$Sample2) - min(data.Ex01.3$Sample2)

## [1] 18.3

A more widely used measure of dispersion is the sample variance, which is
defined as

∑n
i=1(Xi − X)2

n− 1
.

This is just the corrected sum of squares (see Chapter 0 of these notes) divided by
n− 1, where n is the sample size.

EXAMPLE 1.4. Calculate the variance of the sample mean, standard deviation, and standard
error for the data sets in Example 1.3.

SOLUTION. Make use of the corrected sums of squares,

> CSS1 <- sum((data.Ex01.3$Sample1 - mean(data.Ex01.3$Sample1))^2)

> CSS2 <- sum((data.Ex01.3$Sample2 - mean(data.Ex01.3$Sample2))^2)

> Var1 <- CSS1/(length(data.Ex01.3$Sample1) - 1) # variance of Sample 1

> Var2 <- CSS2/(length(data.Ex01.3$Sample2) - 1) # variance of Sample 2

> Vars <- c(Var1, Var2) # put both variances in a vector for convenience

> Vars

## [1] 0.641111 49.851111

The sample standard deviation is the positive square root of the sample variance. Mak-
ing use of the fact that both variances are in Vars, both standard deviations can be calcu-
lated in a single command.

> sqrt(Vars) # the standard deviations of Samples 1 and 2

## [1] 0.800694 7.060532

As you might expect, R actually provides the commands var( ) and sd( ) to calculate
both the variance and standard deviation in a single step.

> var(data.Ex01.3$Sample1)

## [1] 0.641111

> var(data.Ex01.3$Sample2)

## [1] 49.8511

> sd(data.Ex01.3$Sample1)

## [1] 0.800694

> sd(data.Ex01.3$Sample2)

## [1] 7.06053

The standard error, SE = s√
n , can now be computed. Remember that the length( )

function can be used to determine the sample size.
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> sd(data.Ex01.3$Sample1)/sqrt(length(data.Ex01.3$Sample1)) #standard error

## [1] 0.266898

> sd(data.Ex01.3$Sample2)/sqrt(length(data.Ex01.3$Sample2))

## [1] 2.35351

Remember to report the variance, standard deviation, and standard error to the correct
number of significant digits.

Tables and Graphs

R can be used to make tables and graphs of data sets.

EXAMPLE 1.5. The following table shows the number of sedge plants, Carex flacca, found in
800 sample quadrats in an ecological study of grasses. Each quadrat was 1 m2. Summarize
these data in a table with columns for relative frequency, cumulative frequency, and relative
cumulative frequency. Produce a bar graph of the data.

Plants/quadrat (Xi) Frequency ( fi)

0 268

1 316

2 135

3 61

4 15

5 3

6 1

7 1

SOLUTION. Read in the original data containing 800 observations. Instead of listing the
entire data set, use the head( ) and tail( ) functions to list just the first few rows and the
last few rows of the data.

�

Notice that the data in the file are
not presented as in the text. Rather, the
raw data are arranged much like they
might have been recorded in a field
notebook where a researcher made a
list of the number of plants/quadrat as
the quadrats were encountered. This
demonstrates how you could take a
tablet into the field to make recordings
and then analyze the resulting raw data
in R.

> data.Ex01.5 <- read.table("http://waveland.com/Glover-Mitchell/Example01-5.txt",

+ header = TRUE)

> head(data.Ex01.5)

## Carex

## 1 0

## 2 1

## 3 2

## 4 1

## 5 1

## 6 3

> tail(data.Ex01.5, n = 3)

## Carex

## 798 1

## 799 2

## 800 2

If no argument other than the file name is used in the head( ) or tail( ) functions,
then the first or last six rows of the table are listed. To specify an exact number of rows to
be listed, use an additional argument such as n = 3, as was done above with the tail( )

function. In this example, the tail function shows that there are 800 observations in the data
set, as expected. Now make use of R’s table( ) function.
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table( )

The table( ) function takes one or more specified columns (or rows) of data from a ta-
ble, sorts it by entry, and lists the number of times each entry occurs, that is, it produces
a frequency table.

The function table(data.Ex01.4$Carex) takes each different entry in the Carex column and
counts how many times that entry occurs. The result of this process is a list of frequency
counts for the observed numbers of Carex per quadrat. Put the result into a “list” named
counts.

> counts <- table(data.Ex01.5$Carex)

> counts

##

## 0 1 2 3 4 5 6 7

## 268 316 135 61 15 3 1 1

These are precisely the frequencies given in the original data table. To make a table from
these lists put the counts data into a so-called data frame (which we name carex.table)
using the data.frame( ) command (see page 9). Then use the colnames( ) command to
give the columns in the table the required names. Finally list carex.table.

> carex.table <- data.frame(counts)

> colnames(carex.table) <- c("Plants", "Freq")

> carex.table

## Plants Freq

## 1 0 268

## 2 1 316

## 3 2 135

## 4 3 61

## 5 4 15

## 6 5 3

## 7 6 1

## 8 7 1

To obtain the relative frequencies, divide carex.table$Freq by the total number of ob-
servations (quadrats), then multiply by 100. Here we happen to know that the number of
quadrats is n = 800. In general, use the length function to determine n

> n <- length(data.Ex01.5$Carex) # n = the number of quadrats

> 100*carex.table$Freq/n

## [1] 33.500 39.500 16.875 7.625 1.875 0.375 0.125 0.125

To add the relative frequencies as a column to carex.table first create a new column in
carex.table using carex.table["RelFreq"] and then place the actual relative frequencies
into the column.

> carex.table["RelFreq"] <- 100*carex.table$Freq/n

Now that you know how the commands work, in the future you can do this in a single
step as above. Verify that the relative frequencies were added by listing the table.

> carex.table

## Plants Freq RelFreq

## 1 0 268 33.500

## 2 1 316 39.500
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## 3 2 135 16.875

## 4 3 61 7.625

## 5 4 15 1.875

## 6 5 3 0.375

## 7 6 1 0.125

## 8 7 1 0.125

To add the cumulative frequencies to the table, use the cumulative sum function cumsum( )

applied to the carex.table$Freq column and insert the result into a new column of carex.table
called CumFreq and then list the result.

> carex.table["CumFreq"] <- cumsum(carex.table$Freq)

> carex.table

## Plants Freq RelFreq CumFreq

## 1 0 268 33.500 268

## 2 1 316 39.500 584

## 3 2 135 16.875 719

## 4 3 61 7.625 780

## 5 4 15 1.875 795

## 6 5 3 0.375 798

## 7 6 1 0.125 799

## 8 7 1 0.125 800

To add the relative cumulative frequencies to the table, apply the cumsum( ) function
to the RelFreq column. Then insert the result into a new column of carex.table called

Z You could also compute the relative
cumulative frequencies by taking the
cumulative frequency column, dividing
by n, and multiplying by 100 as we did
for the relative frequencies.

RelCumFreq and list the result.

> carex.table["RelCumFreq"] <- cumsum(carex.table$RelFreq)

> carex.table

## Plants Freq RelFreq CumFreq RelCumFreq

## 1 0 268 33.500 268 33.500

## 2 1 316 39.500 584 73.000

## 3 2 135 16.875 719 89.875

## 4 3 61 7.625 780 97.500

## 5 4 15 1.875 795 99.375

## 6 5 3 0.375 798 99.750

## 7 6 1 0.125 799 99.875

## 8 7 1 0.125 800 100.000

To make a bar graph of these data, use R’s barplot( ) command on the original counts
data. When you enter the barplot( ) command the plot will appear in a new window.

> barplot(counts)
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Figure 1.1: The default bar graph for
Example 1.5.

Another method to create the bar graph is to use the columns from carex.table. The
syntax in this case is barplot(height, names.arg = Names) where height is the frequency
vector and names.arg is the vector of corresponding names. In our case, use

> barplot(carex.table$Freq, names.arg = carex.table$Plants)

It is good practice to add titles and labels to the plot. To add a title, use main. To add x-
and y-axis labels use, xlab and ylab inside the barplot( ) command. Note that the text of
the title and labels must be inside quotation marks.

> barplot(counts, main = "Example 1.5", xlab = "Plants/quadrat",

+ ylab = "Frequency") 0 1 2 3 4 5 6 7
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Figure 1.2: A labelled bar graph for
Example 1.5.
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EXAMPLE 1.6. The following data were collected by randomly sampling a large population
of rainbow trout, Salmo gairdneri. The variable of interest is weight in pounds. Summarize
these data in a table with columns for relative frequency, cumulative frequency, and relative
cumulative frequency. Produce a histogram of the data.

Xi (lb) fi fiXi fiX2
i

1 2 2 2

2 1 2 4

3 4 12 36

4 7 28 112

5 13 65 325

6 15 90 540

7 20 140 980

8 24 192 1536

9 7 63 567

10 9 90 900

11 2 22 242

12 4 48 576

13 2 26 338

Sum 110 780 6158

SOLUTION. The raw data set contains weights of 110 rainbow trout. As usual, first read the
data set. Instead of listing the entire data set, use the head( ) and tail( ) functions to list a
selected number of rows of the data.

> data.Ex01.6 <- read.table("http://waveland.com/Glover-Mitchell/Example01-6.txt",

+ header = TRUE)

> head(data.Ex01.6, n = 5)

## Pounds

## 1 11

## 2 10

## 3 6

## 4 9

## 5 5

> tail(data.Ex01.6, n = 3)

## Pounds

## 108 7

## 109 6

## 110 7

There are 110 observations in the data set, as expected. Use the table( ) function to
produce a list of frequency counts of the different weights in the data set. Z Remember to specify that you want

the Pounds column from data.Ex01.6.

> counts <- table(data.Ex01.6$Pounds)

> counts

##

## 1 2 3 4 5 6 7 8 9 10 11 12 13

## 2 1 4 7 13 15 20 24 7 9 2 4 2

Put counts into a data frame (called trout.table) using the data.frame( ) command
and use the colnames( ) command to give the columns in the table the required names.

> trout.table = data.frame(counts)

> colnames(trout.table) <- c("Pounds", "Freq")

> tail(trout.table, n = 3)
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## Pounds Freq

## 11 11 2

## 12 12 4

## 13 13 2

Using the same process as in the previous example, make a table with columns for rela-
tive frequency, cumulative frequency, and relative cumulative frequency. Obtain the relative
frequency by dividing trout.table$Freq by the total number of observations n, then multi-
plying by 100. To add the relative frequencies as a column to the trout.table, create a new
column in trout.table using trout.table["RelFreq"] and then place the actual relative
frequencies into the column.

> n <- length(data.Ex01.6$Pounds) # n = the number of observations

> trout.table["RelFreq"] <- 100*trout.table$Freq/n

To add the cumulative frequencies to the table, use the cumsum( ) function on the
trout.table$Freq column and insert the result into a new column of trout.table.

> trout.table["CumFreq"] <- cumsum(trout.table$Freq)

To add the relative cumulative frequencies to the table, use the cumsum( ) function on
the RelFreq column and then insert the result into a new column of trout.table. This
completes the table, so list the result.

> trout.table["RelCumFreq"] <- cumsum(trout.table$RelFreq)

> trout.table

## Pounds Freq RelFreq CumFreq RelCumFreq

## 1 1 2 1.818182 2 1.81818

## 2 2 1 0.909091 3 2.72727

## 3 3 4 3.636364 7 6.36364

## 4 4 7 6.363636 14 12.72727

## 5 5 13 11.818182 27 24.54545

## 6 6 15 13.636364 42 38.18182

## 7 7 20 18.181818 62 56.36364

## 8 8 24 21.818182 86 78.18182

## 9 9 7 6.363636 93 84.54545

## 10 10 9 8.181818 102 92.72727

## 11 11 2 1.818182 104 94.54545

## 12 12 4 3.636364 108 98.18182

## 13 13 2 1.818182 110 100.00000

To make a histogram of the original frequency data, R has a built-in histogram command
hist( ).

> hist(data.Ex01.6$Pounds)

Histogram of data.Ex01.6$Pounds
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Figure 1.3: The default histogram for
the rainbow trout weights in Exam-
ple 1.6.

To create breaks in the histogram at every integer from 0 to 14, modify the code just
slightly using breaks = c(0:14). Add a title and a label for the x-axis in the usual way.

> hist(data.Ex01.6$Pounds, breaks = c(0:14), main = "Example 1.6",

+ xlab = "Weight")
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Figure 1.4: A histogram for the rainbow
trout weights with breaks for every
pound.

EXAMPLE 1.8. The list below gives snowfall measurements for 50 consecutive years (1951–
2000) in Syracuse, NY (in inches per year). The data have been rearranged in order of in-
creasing annual snowfall. Create a histogram using classes of width 30 inches and then
create a histogram using narrower classes of width 15 inches. (Source: http://neisa.unh.
edu/Climate/IndicatorExcelFiles.zip)

http://neisa.unh.edu/ Climate/IndicatorExcelFiles.zip
http://neisa.unh.edu/ Climate/IndicatorExcelFiles.zip
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71.7 73.4 77.8 81.6 84.1 84.1 84.3 86.7 91.3 93.8
93.9 94.4 97.5 97.6 98.1 99.1 99.9 100.7 101.0 101.9

102.1 102.2 104.8 108.3 108.5 110.2 111.0 113.3 114.2 114.3
116.2 119.2 119.5 122.9 124.0 125.7 126.6 130.1 131.7 133.1
135.3 145.9 148.1 149.2 153.8 160.9 162.6 166.1 172.9 198.7

SOLUTION. Read the data and list a few entries

> data.Ex01.8 <- read.table("http://waveland.com/Glover-Mitchell/Example01-8.txt",

+ header = TRUE)

> tail(data.Ex01.8, n = 3)

## Snowfall

## 48 166.1

## 49 172.9

## 50 198.7

To create a histogram with breaks every 30 inches, use breaks = seq(60, 210, by =

30), which generates a sequence of numbers starting at 60 and going to 210 by multiples of
30. Add a title and a label for the x-axis in the usual way.

> hist(data.Ex01.8$Snowfall, breaks = seq(60, 210, by = 30),

+ main = "Example 1.7a", xlab = "Snowfall (in)")

Example 1.7a
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Figure 1.5: A histogram for snowfall in
Syracuse, NY with breaks every 30 in.

To create breaks in the histogram every 15 in, modify the code using by = 15. The de-
fault labels in the first histogram on the x-axis go from 100 to 200. To change it to 60 to
210 is a bit complicated (and is probably not necessary initially). First turn off the default
x-axis scale with xaxt = ’n’. Then in a second R comand, use the axis( ) command to
take control of the x-axis by setting side = 1, put tick marks every 15 units starting at 60
and ending at 210 using at = seq(60, 210, 15), and finally label the ticks using labels =

seq(60, 210, 15). The y-axis can be modified in the same way using side = 2.

> hist(data.Ex01.8$Snowfall, breaks = seq(60, 210, by = 15),

+ main = "Example 1.7b", xlab = "Snowfall (in)", xaxt = 'n')

> axis(side = 1, at = seq(60, 210, by = 15), labels = seq(60, 210, by = 15))

Example 1.7b
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Figure 1.6: A histogram for snowfall in
Syracuse, NY with breaks every 15 in.

Quartiles and Box Plots

Five-number summaries are easily carried out in R.

EXAMPLE 1.9. Determine the five-number summary for the cypress pine data in Exam-
ple 1.2.

CCH 17 19 31 39 48 56 68 73 73 75 80 122

Depth 1 2 3 4 5 6 6 5 4 3 2 1

SOLUTION. To produce a five-number summary, read in the data in the usual way and use
the fivenum( ) function.

> data.Ex01.9 <- read.table("http://waveland.com/Glover-Mitchell/Example01-9.txt",

+ header = TRUE)

> fivenum(data.Ex01.9$CCH)

## [1] 17 35 62 74 122

The five numbers are the minimum, Q1, the median, Q3, and the maximum, respectively.

EXAMPLE 1.10. Determine the five-number summary for this sample of 15 weights (in lb) of
lake trout caught in Geneva’s Lake Trout Derby in 1994.
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Weight

2.26 3.57 7.86

2.45 1.85 3.88

4.60 4.90 3.60

3.89 2.14 1.52

2.83 1.84 2.12

SOLUTION. Read the data and use the fivenum( ) function.

> data.Ex01.10 <- read.table("http://waveland.com/Glover-Mitchell/Example01-10.txt",

+ header = TRUE)

> fivenum(data.Ex01.10$Weight)

## [1] 1.520 2.130 2.830 3.885 7.860

Compare these values to the those given in the text.

Median: 2.83

Quartiles: 2.12 3.89

Extremes: 1.52 7.86

There are minor differences in the values of the quartiles calculated by R and those
calculated by hand. R uses a method first introduced by Tukey in 1977 while in our text we
use a slightly different method. An article by Langford in the Journal of Statistics Education
(see http://www.amstat.org/publications/jse/v14n3/langford.html) indicates that there
are at least seven different methods used to determine quartiles! The difference between
Tukey’s method and Moore’s method that we use is the difference between whether the
median is included or excluded when calculating the quartiles. While the differences in
these calculations are generally small, they can be significant. As Langford mentions, even
small differences can be important. He quotes Freund and Perles:

Before we go into any details, let us point out that the numerical differences between
answers produced by the different methods are not necessarily large; indeed, they
may be very small. Yet if quartiles are used, say to establish criteria for making deci-
sions, the method of their calculation becomes of critical concern. For instance, if sales
quotas are established from historical data, and salespersons in the highest quarter
of the quota are to receive bonuses, while those in the lowest quarter are to be fired,
establishing these boundaries is of interest to both employer and employee. (Freund
and Perles. 1987. A new look at quartiles of ungrouped data. The American Statistician,
41(3), 200–203.)

EXAMPLE 1.11. Construct a box plot for the lake trout data in Example 1.10.

SOLUTION. Apply the command boxplot( ) to the data and add titles or labels just as with
bar graphs or histograms.

> boxplot(data.Ex01.10$Weight, main = "Example 1.10",

+ ylab = "Weight (lb)")
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Figure 1.7: A box plot of fish weights
for the Geneva Lake Trout Derby.In the first few examples of this chapter, the depths of each observation were

listed. R does not provide a function to calculate depths, but we have provided
one, as illustrated below.

PROBLEM 1.0 (Additional Exercise). Calculate the depths of the carapace lengths in Concept
Check 2 of Chapter 1.

SOLUTION. First read and list the data file http://waveland.com/Glover-Mitchell/

Problem01-2.txt.

http://www.amstat.org/publications/jse/v14n3/langford.html
http://waveland.com/Glover-Mitchell/Problem01-2.txt
http://waveland.com/Glover-Mitchell/Problem01-2.txt
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> data.Prob01.2 <- read.table("http://waveland.com/Glover-Mitchell/Problem01-2.txt",

+ header = TRUE)

> data.Prob01.2

## Length

## 1 4.1

## 2 5.2

## 3 4.3

## 4 5.1

## 5 4.7

## 6 4.5

## 7 3.9

## 8 4.6

## 9 4.3

Next download the depth( ) function using the source( ) command.

> source("http://waveland.com/Glover-Mitchell/depth.txt") # download source file

## Downloaded: depth( ).

Now the function is available to use for the rest of your R session. If you close the cur-
rent session and later open another and want to use this function, you will need to read it in
again using source( ). Simply apply the depth( ) function to the data. The result is a table
with the original data in ascending order and the corresponding depths.

> depth(data.Prob01.2$Length)

## data.Prob01.2$Length Depth

## 7 3.9 1

## 1 4.1 2

## 3 4.3 3

## 9 4.3 4

## 6 4.5 5

## 8 4.6 4

## 5 4.7 3

## 4 5.1 2

## 2 5.2 1

Command Summary

The following are the new commands and functions introduced in Chapter 1.

barplot(height, names.arg = NULL, main = "Title", xlab = "x-axis label",

ylab = "y-axis label")

Details: height is either a vector or matrix of values (frequencies) describing
the bars which make up the plot. If height is a vector, then the plot consists
of a sequence of rectangular bars with heights given by the values in height.
names.arg is a vector of names to be plotted below each bar or group of bars. If
this argument is omitted, then the names are taken from the names attribute of
height if this is a vector, or the column names if it is a matrix. The optional ar-
guments main = "Title", xlab = "x-axis label", and ylab = "y-axis label"

are used to provide labels for the entire plot, the x-axis, and the y-axis, respec-
tively. Note the labels must be within quotes. There are other optional argu-
ments that can be found online.
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boxplot(x, y, ..., names, main = "Title", xlab = "x-axis label",

ylab = "y-axis label")

Details: x, y, ... are vectors containing the data sets for which the box plots
are being drawn. If more than one vector is specified, the box plots are drawn
side by side. names is a vector of labels, one for each data set, that will be
printed under each box plot. The optional arguments main = "Title", xlab
= "x-axis label", and ylab = "y-axis label" are used to provide labels for
the entire plot, the x-axis, and the y-axis, respectively. Note the labels must be
within quotes. There are other optional arguments that can be found online.

colnames(dataFrame)

Details: Used to name the columns in a data frame. For example, colnames(dataFrame)
<- c("Col1", "Col2", "Col3") renames the columns in dataFrame as Col1,
Col2, and Col3.

depth(data)

Details: The depth( ) function calculates the depths of a column or vector
of numeric data. The result is a table with the original data in ascending or-
der and the corresponding depths. This function must be downloaded using
source("http://waveland.com/Glover-Mitchell/depth.txt").

hist(x, breaks = v, main = "Title", xlab = "x-axis label",

ylab = "y-axis label")

Details: x is vector containing the data set for which the histogram is being
drawn. The optional argument breaks = v specifies the break points for the
histogram will occur at the values listed in the vector v. The optional arguments
main = "Title", xlab = "x-axis label", and ylab = "y-axis label" are used
to provide labels for the entire plot, the x-axis, and the y-axis, respectively. Note
that the labels must be within quotes. There are other optional arguments that
can be found online.

range(dataSet)

Details: Returns the minimum and maximum values in dataSet. To find the
range as defined in An Introduction to Biostatistics, use max(dataSet) - min(dataSet).

round(x, n = k)

Details: Rounds the number x to k digits after the decimal point.

source("filePathname")

Details: The source( ) command reads an R script (set of R commands) from
a file either on your own computer or from a file on the internet located at
"filePathname".

table(data)

Details: The table( ) function takes one or more specified columns (or rows)
of data from a table, sorts it by entry, and lists the number of times each entry
occurs, that is, a frequency table. See Example 1.5.

var(dataSet), sd(dataSet)

Details: These functions evaluate the variance and standard deviation of the
sample dataSet.
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Problems

1. The data set http://waveland.com/Glover-Mitchell/Problem01-OldFaithful.txt lists
the time interval (in minutes) between eruptions of Old Faithful for the entire year of
2010.

(a) Read the data into a file variable called OF.

(b) How many eruptions were there in 2010? What function in R can you use to deter-
mine this?

(c) Create a five-number summary of the data.

(d) What were the shortest and longest times between eruptions in 2010?

(e) Compare the median and mean times between 2010 eruptions.

(f ) Create a histogram for these data. Label the plot “Distribution of Eruption Inter-
vals for Old Faithful, 2010.” Label the x-axis as “Minutes between eruptions.” (See
page 136 for the answer.)

(g) Create a box plot for these data.

(h) Find the variance and standard deviation for the eruption intervals.

2. Return to data set http://waveland.com/Glover-Mitchell/Problem00-3.txt that lists
the monthly snowfall for Buffalo, NY for each each snow season from 1940–41 to 2013–
14.

(a) Print the first and last few rows of the data set.

(b) Create a five-number summary of the annual snowfall data. �

Names are case sensitive in R.
(c) Compare the median and mean annual snowfalls for this period

(d) Create a histogram of the annual snowfall data. Label the plot “Annual Snowfall
Distribution, Buffalo, NY” Label the x-axis as “Inches.”

(e) Create a box plot of the annual snowfall data. Use appropriate labels.

(f ) Find the variance and standard deviation for the annual snowfall data.

(g) Create side-by-side box plots of the monthly snowfalls for November, December,

January, and February. Hint: boxplot( ) will accept more than one data set at a time. Use

appropriate labels.

http://waveland.com/Glover-Mitchell/Problem01-OldFaithful.txt
http://waveland.com/Glover-Mitchell/Problem00-3.txt


2. Introduction to Probability

There are no examples in Chapter 2 that require data sets. Nonetheless, we will
use parts of the first four examples to illustrate the use of additional functions in
R.

Use of Permutations and Combinations

EXAMPLE 2.1. Eight consumers are asked to rank three brands of Australian beer using 1 for
the most preferable and 3 for the least preferable. How many different rankings can occur
keeping track of the individual consumers?

SOLUTION. This problem combines a couple of ideas. First each consumer has to rank the
three products. That’s a permutation question, so there are the symbol 3! = 6 possible
rankings by each consumer. In R we use the factorial( ) function.

> factorial(3)

## [1] 6

This ranking process is repeated 8 times, once by each consumer, so there are (3!)8 differ-
ent rankings. Use ˆ to indicate a power in R.

> factorial(3)^8

## [1] 1679616

EXAMPLE 2.2. Suppose a die is rolled 3 times and the outcome is recorded for each roll.
How many different results can be recorded for the set of three rolls?

SOLUTION. A three-stage experiment with six possible outcomes with repetition allowed:

> 6^3

## [1] 216

How many sets of results will have a different side up for each roll?

SOLUTION. This is a three-stage experiment without repetition. R has no built in function
to calculate the number of such permutations. However, from the definition of nPk we have
6P3 = 6!

(6−3)! .

> factorial(6)/factorial(6-3)

## [1] 120

EXAMPLE 2.3. An insect toxicologist would like to test the effectiveness of three new
pyrethroid insecticides on populations of European corn borer moths, Ostrinia nubilalis,
but she has 7 different geographically isolated strains available. If each strain could be used
more than once, how many different tests could she perform?
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SOLUTION. A three-stage experiment with repetition permitted: so

> 7^3 # ways to test each pyrethroid once

## [1] 343

If each strain can be used only once, how many ways could she perform her tests?

SOLUTION. The answer is a permutation, 7P3 or

> factorial(7)/factorial(7-3)

## [1] 210

If the experiment is redesigned to test a single pyrethroid with three of the strains, how many different
experiments can be done?

SOLUTION. This reduces to 7 strains choose 3. The answer is a combination, (7
3). Use

> choose(7,3)

## [1] 35

EXAMPLE 2.4. In a project to investigate the water quality of Lake Erie, 20 samples were
taken. Unknown to the investigators, 5 of the sample containers were contaminated before
use. If 10 of the samples are selected at random, what is the probability that 2 of these
selected samples will be contaminated?

SOLUTION. We use the counting techniques developed earlier to solve a classical probabil-
ity problem.

P(2 of the chosen 10 contaminated) =
(5

2)(
15
8 )

(20
10)

,

so in R use

> choose(5,2)*choose(15,8)/choose(20,10)

## [1] 0.348297

If ten of the samples are selected at random, what is the probability that none will be contaminated?

SOLUTION. This time we use

P(0 of the chosen 10 contaminated) =
(5

0)(
15
10)

(20
10)

So in R use

> choose(5,0)*choose(15,10)/choose(20,10)

## [1] 0.0162539

Command Summary

The following are the new commands and functions introduced in Chapter 2.

choose(n,k)

Details: Returns the value nCk = n!
k!(n−k) for any non-negative integers n and k

with n ≥ k.

factorial(n)

Details: Returns the value n! for any non-negative integer.



3. Probability Distributions

We now turn to the techniques needed to predict the actions of various discrete
and continuous random variables that are fundamental in the life sciences.

Discrete Random Variables

EXAMPLE 3.1. A fair 6-sided die is rolled with the discrete random variable X representing
the number obtained per roll. Give the probability density function for this variable.

SOLUTION. This problem is easier to do by hand. But we use it to illustrate a new R com-
mand.

rep(x, times = n)

Details: x is an object (such as a number or vector) and times is a non-negative integer
representing the number of repetitions of x.

Since the die is fair, each of the six outcomes, 1 through 6, is equally likely, so the pdf is

> f <- rep(1/6, times = 6) # or rep(1/6, 6)

> f

## [1] 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667

EXAMPLE 3.2. A fair 6-sided die is rolled twice with the discrete random variable X rep-
resenting the sum of the numbers obtained on both rolls. Give the density function of this
variable.

SOLUTION. This problem is relatively easy to do by hand. But here is a way to do it using R
that illustrates some new functions. First put the possible outcomes into a vector that will be
our random variable X. Then use the outer( ) function in R to make a table whose entries
are the sums of the corresponding sides of the die.

outer(X, Y, FUN = "*")

Details: X and Y are two vectors and FUN specifies a function to use on all possible combi-
nations of pairs of values from X and Y. For example, outer(X, Y, FUN = "+") produces
a table containing all possible sums of pairs of numbers from X and Y.

Finish using the table( ) function (see Chapter 1) to determine the frequency of each
outcome.

> X <- c(1:6)

> X

## [1] 1 2 3 4 5 6

> two.rolls <- outer(X, X, FUN = "+") # all possible sums of two rolls

> two.rolls

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 2 3 4 5 6 7
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## [2,] 3 4 5 6 7 8

## [3,] 4 5 6 7 8 9

## [4,] 5 6 7 8 9 10

## [5,] 6 7 8 9 10 11

## [6,] 7 8 9 10 11 12

> frequency <- table(two.rolls) # create the frequency table

> g <- frequency/36 # divide by 36 for the probability (relative frequency)

> round(g, digits = 3) # round the output to three digits

## two.rolls

## 2 3 4 5 6 7 8 9 10 11 12

## 0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028

EXAMPLE 3.3. Find the expected values for the random variable X in Examples 3.1 and 3.2.

SOLUTION. For Example 3.1,

µ = E(X) =
6

∑
x=1

x f (x)

In R use the random variable X from the previous example and the density function f from
Example 3.1.

> Expected.X <- sum(X*f)

> Expected.X # the expected value of X

## [1] 3.5

For rolling a die twice as in Example 3.2, first create the random variable of outcomes
and then multiply by the density function found previously.

> Y <- c(2:12) # possible outcomes for two rolls

> Y

## [1] 2 3 4 5 6 7 8 9 10 11 12

> Expected.Y <- sum(Y*g) # density g from the previous example

> Expected.Y # the expected value of two rolls

## [1] 7

EXAMPLE 3.4. Find the expected value of X2 in Examples 3.1 and 3.2.

SOLUTION. For Example 3.1, making use of earlier calculations

> Expected.X.sq <- sum(X^2*f) # f is the density function from Example 3.1

> Expected.X.sq # the expected value of X^2

## [1] 15.1667

For Example 3.2,

> Expected.Y.sq <- sum(Y^2*g) # g is the density function for 2 rolls

> Expected.Y.sq # the expected value of Y^2

## [1] 54.8333

EXAMPLE 3.5. Find the variances for X in Examples 3.1 and 3.2.

SOLUTION. For Example 3.1, σ2 = E(X2)− [E(X)]2 . Using the earlier calculations
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> varX <- Expected.X.sq - (Expected.X)^2

> varX

## [1] 2.91667

For Example 3.2,

> varY <- Expected.Y.sq - (Expected.Y)^2

> varY

## [1] 5.83333

EXAMPLE 3.6. Breeding pairs of the common robin, Turdus migratorius, typically produce
a clutch of 3 to 6 eggs. Assume the estimated density function for the random variable X
(eggs per clutch) is given in the table below. Based on this information, what is E(X) and
what is σX?

No. of eggs: x 3 4 5 6

Density: f (x) 0.35 0.45 0.16 0.04

SOLUTION. The mean or expected value is µ = E(X) = ∑6
x=3 x f (x). The variance is

σ2 = E(X2)− [E(X)]2. Create the appropriate random variable and density functions and
use the sum( ) function.

> Eggs <- c(3:6) # the sample space

> Eggs

## [1] 3 4 5 6

> f <- c(0.35, 0.45, 0.16, 0.04)

> Expected.Eggs <- sum(Eggs*f) # mean (expected) number of eggs hatched

> Expected.Eggs

## [1] 3.89

> Expected.Eggs.sq <- sum(Eggs^2*f)

> var.Eggs <- Expected.Eggs.sq - (Expected.Eggs)^2 # variance

> var.Eggs

## [1] 0.6579

> sqrt(var.Eggs) # standard deviation

## [1] 0.81111

EXAMPLE 3.7. Find the CDF for Example 3.6, where X was the random variable eggs per
clutch for the common robin.

SOLUTION. The cumulative distribution function is easily tabulated from the density func-
tion. Simply add all values of f for the values of X less than or equal to x. That’s done with
the cumsum( ) function (see Chapter 1).

> CDF <- cumsum(f) # f is the density function in Example 3.6

> CDF

## [1] 0.35 0.80 0.96 1.00
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We can combine the pdf and CDF into a single table, as one might do for a report. First
bind the rows to together using the rbind( ) command and then add the column names.
Always use quote marks around the labels of each column.

> Robin <- rbind(f, CDF) # this binds the two row vectors together

> colnames(Robin) <- c("3", "4", "5", "6") # mind the quotes

> Robin

## 3 4 5 6

## f 0.35 0.45 0.16 0.04

## CDF 0.35 0.80 0.96 1.00

What is the probability of a robin’s nest containing 4 or fewer eggs?

SOLUTION. This is easy to do by hand, but let’s practice some R syntax. Use the Robin

table. The rows and columns can be referred to by their names, which must be in quotes.
P(X ≤ 4) = F(4) is

> Robin["CDF", "4"]

## [1] 0.8

What is the probability of finding strictly between 3 and 6 eggs in a clutch?

SOLUTION. P(3 < X < 6) = F(5)− F(3) is

> Robin["CDF", "5"] - Robin["CDF", "3"] # remember the quotes

## [1] 0.61

The Binomial Distribution

The most important discrete variable distribution in biology is the binomial distri-
bution. A binomial random variable probability density function is characterized
by the two parameters n, the number of trials or sample size, and p, the probability
of success on a trial. R has built in density and cumulative density functions for
binomial random variables.

dbinom(x, n, p = probability)

Details: x is the number of successes; n specifies the number of trials; p =

probability specifies the probability of success, with default p = 0.5.

pbinom(x, n, p = probability)

Details: The arguments are the same as for dbinom( ).

The function dbinom( ) is used for the pdf for the binomial and pbinom( ) is used
for the CDF.

EXAMPLE 3.8. Assuming that sex determination in human babies follows a binomial distri-
bution, find the density function and CDF for the number of females in families of size 5.

SOLUTION. P(female) = P(success) = p = 0.5. The number of trials is n = 5. Individual
values of the pdf and CDF can be computed using
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> dbinom(3, 5, p = 0.5) # 3 females in 5 trials

## [1] 0.3125

> pbinom(3, 5, p = 0.5) # 3 or fewer females in 5 trials

## [1] 0.8125

For the entire pdf and CDF, use vector inputs for all possible numbers of successes: c(0:5).

> pdf = dbinom(c(0:5), 5, p = 0.5) # entire pdf

> CDF = pbinom(c(0:5), 5, p = 0.5) # entire CDF

> pdf

## [1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125

> CDF

## [1] 0.03125 0.18750 0.50000 0.81250 0.96875 1.00000

We can combine the pdf and CDF into a single table. Bind the rows to together using the
rbind( ) command and then add the column names. Always use quote marks around the
labels of each column.

> Binom <- rbind(pdf, CDF) # this binds the two row vectors together

> colnames(Binom) <- c("0", "1", "2", "3", "4", "5") # mind the quotes

> Binom

## 0 1 2 3 4 5

## pdf 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125

## CDF 0.03125 0.18750 0.5000 0.8125 0.96875 1.00000

EXAMPLE 3.9. A particular strain of inbred mice has a form of muscular dystrophy that has
a clear genetic basis. In this strain the probability of appearance of muscular dystrophy in
any one mouse born of specified parents is 1

4 . If 20 offspring are raised from these parents,
find the following probabilities.

(a) Fewer than 5 will have muscular dystrophy;

(b) Five will have muscular dystrophy;

(c) Fewer than 8 and more than 2 will have muscular dystrophy.

SOLUTION. The number of trials is n = 20 and the probability of success is p = 1/4.

(a) To determine the probability that fewer than 5 will have muscular dystrophy, use
P(X < 5) = F(4).

> pbinom(4, 20, p = 1/4) # pbinom is the CDF

## [1] 0.414842

(b) To determine the probability that 5 will have muscular dystrophy, use the pdf.

> dbinom(5, 20, p = 1/4) # dbinom is the pdf

## [1] 0.202331

(c) To determine the probability that fewer than 8 and more than 2 will have muscu-
lar dystrophy, use P(2 < X < 8) = F(7)− F(2).
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> pbinom(7, 20, p = 1/4) - pbinom(2, 20, p = 1/4)

## [1] 0.806928

EXAMPLE 3.10. Suppose it is known that the probability of recovery from infection with the
Ebola virus is 0.10. If 16 unrelated people are infected, find the following:

(a) The expected number who will recover;

(b) The probability that 5 or fewer recover;

(c) The probability that at least 5 will recover;

(d) The probability that exactly 5 will recover.

SOLUTION. The number of trials is n = 16 and the probability of success is p = 1/10.

(a) The expected number who will recover is

E(X) = µ = np = 16(0.10) = 1.6.

(b) The probability that 5 or fewer recover is

> pbinom(5, 16, p = 1/10) # CDF: P(X <= 5) = F(5)

## [1] 0.996703

(c) The probability that at least 5 will recover is

> 1 - pbinom(4, 16, p = 1/10) # P (X >= 5) = 1 - F(4)

## [1] 0.017004

> pbinom(4, 16, p = 1/10, lower.tail = FALSE) # another method

## [1] 0.017004

The cumulative density function has an additional argument called lower.tail.
By default, it is set to TRUE so that we get the ordinary density function. Using
pbinom(x, n, p = probability, lower.tail = FALSE), the function returns the
value 1 - pbinom(x, n, p = probability), that is, 1− F(x), which is the same
as P(X > x) = P(X ≥ x + 1).

(d) The probability that exactly 5 will recover is

> dbinom(5, 16, p = 1/10) # pdf: P(X = 5) = f(5)

## [1] 0.0137072

The Poisson Distribution

The discrete random variable describing the number of occurrences of an event
in a continuous interval of time or space, sometimes called rare, random events,
arises from what are known as Poisson processes. The expected number of events
during any one period is the same as during any other period of the same length
and is denoted by µ. To be able to use a Poisson distribution the value of µ must
be known or determined from a sample. R has built in density and cumulative
density functions, dpois( ) and ppois( ), respectively.

dpois(x, mu)
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ppois(x, mu, lower.tail = TRUE)

Details: x is the number of successes and mu specifies the expected number
(mean) of successes in one period. The cumulative density function has an
additional argument called lower.tail. By default, it is set to TRUE so that the
left tail of the density function is used. Using ppois(n, mu.est, lower.tail =

FALSE), the function returns the value 1 - ppois(n, mu.est) = 1− F(n), which
is the same as P(X > n) or the right tail of the function.

EXAMPLE 3.11. A radioactive source emits decay particles at an average rate of 4 particles
per second. Find the probability that 2 particles are emitted in a 1-second interval.

SOLUTION. Here mu = 4 particles per second. We want

> dpois(2, 4) # pdf: P(X = 2) = f(2)

## [1] 0.146525

EXAMPLE 3.12. An ichthyologist studying the spoonhead sculpin, Cottus ricei, catches spec-
imens in a large bag seine that she trolls through the lake. She knows from many years
experience that on average she will catch 2 fish per trolling run. Find the probabilities of
catching

(a) No fish on a particular run.

(b) Fewer than 6 fish on a particular run;

(c) Between 3 and 6 fish on a particular run.

SOLUTION. mu = 2 fish/run.

(a) For no fish use

> dpois(0, 2) # pdf: P(X= 0) = f(0)

## [1] 0.135335

(b) For fewer than 6 fish, P(X < 6) = F(5). Use

> ppois(5, 2) # CDF: F(5)

## [1] 0.983436

(c) For between 3 and 6 fish, P(3 < X < 6) = F(5)− F(3). Use

> ppois(5, 2) - ppois(3, 2)

## [1] 0.126313

EXAMPLE 3.13. A group of forest ecology students survey several 10-m × 10-m plots in a
subtropical rainforest. They find a mean of 30 trees per plot. Under the assumption that the
trees are randomly distributed, what is the probability of finding no more than 3 trees in a
1-m2 plot? Of finding exactly 1 tree in a 1-m2 plot? At least 2 trees?

SOLUTION. If there were a mean of 30 trees in 100 m2, the expected number in a 1-m2

observation plot is

> mu.est <- 30/100

> mu.est

## [1] 0.3

The probability of finding at most 3 trees in a 1-m2 plot is
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> ppois(3, mu.est) # CDF: F(3)

## [1] 0.999734

The probability of finding exactly one tree is

> dpois(1, mu.est) # pdf: f(1)

## [1] 0.222245

Using complements, the probability of finding at least two trees is

> 1 - ppois(1, mu.est) # P(X >= 2) = 1 - F(1)

## [1] 0.0369363

> ppois(1, mu.est, lower.tail = FALSE) # another method

## [1] 0.0369363

EXAMPLE 3.14. A certain birth defect occurs with probability p = 0.0001. Assume that n =
5000 babies are born at a particular large, urban hospital in a given year.

(a) What is the probability that there is at least 1 baby born with the defect?

(b) What is the probability that there will be no more than 2 babies born with the
defect?

SOLUTION. This is a binomial problem with n = 5000 and p = 0.0001. In R, one should
simply make use of the binomial function. However, since n is very large and np ≤ 10, a
Poisson approximation is possible. Here mu = np = 0.5. Let’s compare the two results.

(a) the probability that there is at least 1 baby with the defect is

> 1 - pbinom(0, 5000, p = 0.0001)

## [1] 0.393485

> 1 - ppois(0, 1/2) # compare to the Poisson approximation

## [1] 0.393469

(b) and the probability that there are no more than 2 with the defect is

> pbinom(2, 5000, p = 0.0001)

## [1] 0.985618

> ppois(2, 1/2) # compare to the Poisson approximation

## [1] 0.985612

The Normal Distribution

The normal distributions depend on two parameters, the mean µ and the standard
deviation σ. In R the functions dnorm( ) and pnorm( ) are used for the pdf and
CDF of various normal distributions.

dnorm(x, mean = mu, sd = sigma)
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pnorm(x, mean = mu, sd = sigma, lower.tail = TRUE)

Details: x is a value of the normal random variable X; mean specifies the mean of
the distribution; sd specifies the standard deviation. The default values are mean

= 0 and sd = 1 that specify the standard normal distribution. The argument
lower.tail is by default TRUE. When set to FALSE, pnorm(x, mean = mu, sd =

sigma, lower.tail = FALSE) returns 1 - pnorm(x, mean = mu, sd = sigma)

or the upper tail of the distribution.

EXAMPLE 3.16. Suppose that the scores on an aptitude test are normally distributed with a
mean of 100 and a standard deviation of 10. (Some of the original IQ tests were purported
to have these parameters.) What is the probability that a randomly selected score is below
90?

SOLUTION. We must find P(X < 90) = F(90). There is no need to transform to the
standard normal distribution. Simply use mean = 100 and sd = 10.

> pnorm(90, mean = 100, sd = 10) # CDF

## [1] 0.158655

What is the probability of a score between 90 and 115?

SOLUTION. We wish to find P(90 < X < 115).

> pnorm(115, mean = 100, sd = 10) - pnorm(90, mean = 100, sd = 10)

## [1] 0.774538

What is the probability of a score of 125 or higher?

SOLUTION. We want P(X ≥ 125), the upper tail.

> pnorm(125, mean = 100, sd = 10, lower.tail = FALSE)

## [1] 0.00620967

EXAMPLE 3.17. Suppose that diastolic blood pressure X in hypertensive women centers
about 100 mmHg and has a standard deviation of 16 mmHg and is normally distributed.
Find P(X < 90), P(X > 124), P(96 < X < 104). Then find x so that P(X ≤ x) = 0.95.

SOLUTION. This time mean = 100 and sd = 16. Use

> pnorm(90, mean = 100, sd = 16) # P(X < 90)

## [1] 0.265986

> pnorm(124, mean = 100, sd = 16, lower.tail = FALSE ) # P(X > 124)

## [1] 0.0668072

> pnorm(104, mean = 100, sd = 16) - pnorm(96, mean = 100, sd = 16) # P(96 < X < 104)

## [1] 0.197413

Finally, find x so that P(X ≤ x) = 0.95. Well, R has a function for that, too.

qnorm(p, mean = mu, sd = sigma)

Details: p is the particular cumulative probability of the normal random variable X that
we are trying to achieve; mean specifies the mean of the distribution; sd specifies the
standard deviation. The default values are mean = 0 and sd = 1 that specify the standard
normal distribution.
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> qnorm(0.95, mean = 100, sd = 16)

## [1] 126.318

This means that approximately 95% of these hypertensive women will have diastolic blood
pressures less than 126.3 mmHg.

EXAMPLE 3.18. Return to Example 3.9 with a genetic form of muscular dystrophy in mice.
This example was solved using binomial probabilities with p = 0.25 and n = 20. Suppose a
larger sample of progeny are generated and we would like to know the probability of fewer
than 15 with muscular dystrophy in a sample of 60.

SOLUTION. While it is difficult to calculate this binomial by hand, in R use

> pbinom(14, 60, p = 1/4) # fewer than 15 mice have muscular dystrophy

## [1] 0.450569

By hand, one would use the normal approximation to the binomial. Since p = 0.25 and
n = 60, it follows that np = µ = 60(0.25) = 15 and n(1 − p) = 60(0.75) = 45; the
normal approximation is acceptable. Since σ2 = np(1− p) = 60(0.25)(0.75) = 11.25, then
σ =
√

11.25. The normal approximation is

> pnorm(14.5, mean = 15, sd = sqrt(11.25)) # use 14.5 for continuity correction

## [1] 0.440749

When using R, it makes sense to use the exact distribution rather than an approximation,
especially since using the exact distribution requires no intermediate calculations.

Command Summary

dbinom(x, n, p = probability)

pbinom(x, n, p = probability, lower.tail = TRUE)

Details: x is the number of successes; n specifies the number of trials; p =

probability specifies the probability of success, with default p = 0.5. The
function pbinom( ) has an additional argument lower.tail that is by default
TRUE. If lower.tail = FALSE, the function returns 1 - pbinom(x, n, p) or the
upper tail of the distribution. dbinom( ) is the pdf and pbinom( ) is the CDF.

dnorm(x, mean = mu, sd = sigma)

pnorm(x, mean = mu, sd = sigma, lower.tail = TRUE)

Details: x is a value of the normal random variable X; mean specifies the mean of
the distribution; sd specifies the standard deviation. The default values are mean

= 0 and sd = 1 that specify the standard normal distribution. The function
pnorm( ) has an additional argument lower.tail that is by default TRUE. If
lower.tail = FALSE, the function returns 1 - pnorm(x, mu, sd) or the upper
tail of the distribution. dnorm( ) is the pdf and pnorm( ) is the CDF.

qnorm(p, mean = mu, sd = sigma)

Details: p is the particular cumulative probability of the normal random variable
X that we are trying to achieve; mean specifies the mean of the distribution; sd
specifies the standard deviation. The default values are mean = 0 and sd = 1

that specify the standard normal distribution.
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dpois(x, mu)

ppois(x, mu, lower.tail = TRUE)

Details: x is the number of successes of interest and mu specifies the expected
number (mean) of successes in one period. The function ppois( ) has an ad-
ditional argument lower.tail that is by default TRUE. If lower.tail = FALSE,
the function returns 1 - ppois(x, mu) or the upper tail of the distribution.
dpois( ) is the pdf and ppois( ) is the CDF.

outer(X, Y, FUN = "*")

Details: X and Y are two vectors and FUN specifies a function to use on all possi-
ble combinations of pairs of values from X and Y. For example, outer(X, Y, FUN

= "+") produces a table containing all possible sums of pairs of numbers from X

and Y.

rbind(x, y, ...); cbind(x, y, ...)

Details: x, y, ... are vectors of the same length that will be bound together as
rows (columns) in a matrix.

rep(x, times = n)

Details: x is an object (such as a number or vector) and times is a non-negative
integer representing the number of repetitions of x.





4. Sampling Distributions

A simple random sample is a sample of size n drawn from a population of size
N in such a way that every possible sample of size n has the same probability of
being selected. Variability among simple random samples drawn from the same
population is called sampling variability. The probability distribution that char-
acterizes some aspect of the sampling variability, usually the mean but not always,
is called a sampling distribution. These sampling distributions allow us to make
objective statements about population parameters without measuring every object
in the population.

EXAMPLE 4.2. Suppose that in a genetics experiment with fruit flies, Drosophila melanogaster,
a very large progeny is generated from parents heterozygous for a recessive allele caus-
ing vestigial wings. Recall from your study of elementary genetics that a cross between
heterozygous parents should produce offspring in a 3:1 ratio of dominant to recessive phe-
notypes:

Vv×Vv −→ 3
4 V− ( 2

4 Vv; 1
4 VV: normal wings), 1

4 (vv: vestigial wings).

Mendelian principles lead to the expectation of 25% vestigial-winged offspring. How many
of a random sample of 20 of the progeny would you expect to be vestigial-winged?

SOLUTION. For the binomial with p = 0.25 and n = 20,

E(X) = np = 20(0.25) = 5,

so the long-term theoretical average expected in samples of size 20 is 5. But the probability
of exactly 5 in a random sample of 20 is

> dbinom(5, 20, p = 0.25)

## [1] 0.202331

Distribution of the Sample Mean

Perhaps the most important sampling distribution in applied statistics is the distri-
bution of the sample mean. Construction of a sampling distribution for the sample
mean or any other statistic is a very arduous task for samples of any appreciable
size. We do examples here for their heuristic value and not to demonstrate accept-
able testing procedures.

EXAMPLE 4.3. Consider a population of size N = 6 consisting of the 6 sides of a fair die. The
sample space is {1, 2, 3, 4, 5, 6}. As we demonstrated in Chapter 3, this population has the
following parameters:

µ =
∑ Xi

N
=

21
6

= 3.5, σ2 =
∑(Xi − µ)2

N
=

17.5
6

.

Note the population distribution is a uniform distribution.
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1 2 3 4 5 6

Distribution of population

0

1
6

As an exercise in sampling distribution construction, let’s draw all possible samples of
size n = 2 from this population that correspond to rolling the die twice. For each sample
drawn calculate the sample mean X.

SOLUTION. Any of the 6 faces can occur on either roll, so this process corresponds to sam-
pling with replacement. Therefore, the total number of possible samples is 6 × 6 = 36.
(In general, sampling with replacement n times from a population of size N generates Nn

possible samples.) In the previous chapter we generated all possible samples of size n = 2
using the outer( ) function.

> X <- c(1:6) # the sample space

> two.rolls.sum <- outer(X, X, FUN = "+") # sum from two rolls

> two.rolls.sum # the 36 possible sample sums

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 2 3 4 5 6 7

## [2,] 3 4 5 6 7 8

## [3,] 4 5 6 7 8 9

## [4,] 5 6 7 8 9 10

## [5,] 6 7 8 9 10 11

## [6,] 7 8 9 10 11 12

Since the sample size is n = 2, we obtain the sample means by dividing the sample sums
in two.rolls.sum by 2.

> two.rolls.means <- two.rolls.sum/2

> two.rolls.means

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 1.0 1.5 2.0 2.5 3.0 3.5

## [2,] 1.5 2.0 2.5 3.0 3.5 4.0

## [3,] 2.0 2.5 3.0 3.5 4.0 4.5

## [4,] 2.5 3.0 3.5 4.0 4.5 5.0

## [5,] 3.0 3.5 4.0 4.5 5.0 5.5

## [6,] 3.5 4.0 4.5 5.0 5.5 6.0

> # the mean of the sampling distribution

> mean.two.rolls <- mean(two.rolls.means)

> mean.two.rolls

## [1] 3.5

> # the variance of the sampling distribution

> var.two.rolls <- sum((two.rolls.means - mean.two.rolls)^2)/length(two.rolls.means)

> var.two.rolls

## [1] 1.45833

We finish by creating a bar plot of the distribution of the means of the two rolls of the
die. Use the table( ) function to create a frequency table of the two.roll.means
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> counts <- table(two.rolls.means)

> counts

## two.rolls.means

## 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

## 1 2 3 4 5 6 5 4 3 2 1

> barplot(counts) # create the bar graph
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0
1

2
3

4
5

6

Figure 4.8: The sampling distribution of
X.

EXAMPLE 4.4. The mean blood cholesterol concentration of a large population of adult
males (50–60 years old) is 200 mg/dl with a standard deviation of 20 mg/dl. Assume that
blood cholesterol measurements are normally distributed. What is the probability that a
randomly selected individual from this age group will have a blood cholesterol level below
250 mg/dl?

SOLUTION. Apply pnorm( ) as in Chapter 3.

> pnorm(250, mean = 200, sd = 20)

## [1] 0.99379

What is the probability that a randomly selected individual from this age group will have a blood
cholesterol level above 225 mg/dl?

SOLUTION. Apply pnorm( ) with the optional argument lower.tail = FALSE to determine
the upper tail above 225 of the distribution.

> pnorm(225, mean = 200, sd = 20, lower.tail = FALSE)

## [1] 0.10565

What is the probability that the mean of a sample of 100 men from this age group will have a value
below 204 mg/dl?

SOLUTION. This question requires the understanding and application of Theorem 4.1 from
the text. Sample means have a sampling distribution with µX = µX = 200 mg/dl and

σX =
σX√

n
=

20√
100

= 2.0 mg/dl,

and because the X’s were normally distributed, the X’s will also be normally distributed.
This time use pnorm( ) with mean = 200 and sd = 2.0.

> pnorm(204, mean = 200, sd = 2.0)

## [1] 0.97725

If a group of 25 older men who are strict vegetarians have a mean blood cholesterol level of 188 mg/dl,
would you say that vegetarianism significantly lowers blood cholesterol levels?

SOLUTION. Use

> pnorm(188, mean = 200, sd = 20/sqrt(25))

## [1] 0.0013499

Yes, this would be a very rare event if the mean were 200 mg/dl.
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EXAMPLE 4.5. Portions of prepared luncheon meats should have pH values with a mean
of 5.6 and a standard deviation of 1.0. The usual quality control procedure is to randomly
sample each consignment of meat by testing the pH value of 25 portions. The consignment
is rejected if the pH value of the sample mean exceeds 6.0. What is the probability of a
consignment being rejected?

SOLUTION. Note here there is no mention of the shape of the distribution of pH values for
individual portions. They may or may not be normally distributed. The question, however,
involves a sample mean, and according to Theorem 4.1 we can assume µX = µX = 5.6
and σX = σx√

n = 1.0√
25

. Also because of the Central Limit Theorem, these X’s are at least
approximately normally distributed. Use

> pnorm(6, mean = 5.6, sd = 1.0/sqrt(25), lower.tail = FALSE)

## [1] 0.0227501

Only 2.28% of the consignments will be rejected using the quality control procedure.

Confidence Intervals for the Population Mean

EXAMPLE 4.6. Suppose a particular species of understory plants is known to have a variance
in heights of 16 cm2 (σ2 = 16 cm2). If this species is sampled with the heights of 25 plants
averaging 15 cm, find the 95% confidence interval for the population mean.

SOLUTION. Here n = 25, X = 15 cm, σ2 = 16 cm2, and σ = 4 cm. Enter all of this into R
and calculate the standard error.

> n <- 25 # sample size

> mx <- 15 # sample mean

> sd <- 4 # population sd

> se <- sd/sqrt(n) # standard error

> se

## [1] 0.8

Notice that to determine a confidence interval requires four different numbers:

1. a point estimate, here the sample mean X;

2. a measure of variability, here the standard error of the mean, σ√
n ;

3. a desired level of confidence 1− α, in this case 1− α = 0.95, so α = 0.05;

4. and the sampling distribution of the point estimate, here the standard normal distribu-
tion, which provides the confidence factor b with which to adjust the variability for the
desired level of confidence, in this case F(b) = (1− α

2 ) = 0.975.

Using this language, the endpoints of the confidence interval have the form

point estimate± (confidence factor)(standard error). (4.1)

Calculate the factor b using the qnorm( ) function and put it all together as in (4.1).

> qnorm(0.975) # with the defaults: mean = 0, sd = 1

## [1] 1.95996

> L1 <- mx - qnorm(0.975)*se # lower endpt

> L2 <- mx + qnorm(0.975)*se # upper endpt

> c(L1, L2) # print both endpoints at once

## [1] 13.432 16.568
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We are 95% confident that the values 13.43 and 16.57 capture the parametric mean, µ.
Let’s recalculate this one more time where we think of qnorm(0.975)*se as the entire error

term that we will add or subtract from the mean. This will give us some highly re-usable
code and allow us to focus on the key idea: determining the error.

> error <- qnorm(0.975)*se

> L1 <- mx - error # lower endpt

> L2 <- mx + error # upper endpt

> c(L1, L2) # print both endpoints at once

## [1] 13.432 16.568

What if we want to be more confident (say, 99%) that we’ve included µ in our interval?

SOLUTION. Now α = 1− 0.99 = 0.01 so 1− α
2 = 0.995 in the error term. This is the only

change required.

> error <- qnorm(0.995)*se

> L1 <- mx - error

> L2 <- mx + error

> c(L1, L2)

## [1] 12.9393 17.0607

Confidence Intervals for the Mean When the Variance is Unknown

If the value of σ is not known and must be estimated, the distribution of the vari-
able obtained by replacing σ by its estimator is called the t distribution. R pro-
vides the same sort of functions to determine t distribution values as it does for
the normal distributions.

dt(x, df)

pt(x, df, lower.tail = TRUE)

Details: The function dt( ) is used for the pdf and pt( ) is used for the CDF. x
is a value of the t statistic and df specifies the degrees of freedom. The optional
argument lower.tail is by default set to TRUE so that the left tail of the density
function is used. Using lower.tail = FALSE, the function returns the value 1 -

pt(x, df), which is the upper or the right tail of the function.

qt(p, df, lower.tail = TRUE)

Details: p is the desired probability to be achieved; df specifies the degrees of
freedom, and the optional argument lower.tail specifies that the probability is
calculated in the lower tail of the distribution when TRUE, which is the default.
For an upper tail calculation set lower.tail = FALSE.

EXAMPLE 4.7. With n = 15, find t0 such that P(−t0 ≤ t ≤ t0) = 0.90.

SOLUTION. Use qt( ) to determine the required t values.

> qt(0.05, df = 14) # 0.05 = alpha/2

## [1] -1.76131

> qt(0.95, df = 14) # 1 - alpha/2
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## [1] 1.76131

> qt(0.05, df = 14, lower.tail = FALSE) # another method

## [1] 1.76131

Both values can be calculated at once by using c(0.05, 0.95) as the input.

> qt(c(0.05, 0.95), df = 14)

## [1] -1.76131 1.76131

Find t0 such that P(−t0 ≤ t ≤ t0) = 0.95.

SOLUTION. Again df = 14, but now α
2 = 1−0.95

2 = 0.025.

> qt(c(0.025, 0.975), df = 14)

## [1] -2.14479 2.14479

EXAMPLE 4.8. Return to the measurements of understory plants introduced in Example 4.6.
Without any prior knowledge of the plant heights, the ecologist samples 25 plants and
measures their heights. He finds that the sample has a mean of 15 cm (X = 15 cm) and
a sample variance of 16 cm2 (s2 = 16 cm2). Note here the sample size, sample mean, and
sample variance are all determined by the sampling process. What is the 95% confidence
interval for the population mean µ?

SOLUTION. Use a process similar to that for confidence intervals when the variance was
known, but use the t distribution since the variance is estimated from the sample.

> n <- 25 # sample size

> mx <- 15 # sample mean

> sd <- sqrt(16) # population sd

> se <- sd/sqrt(n) # standard error

> error <- qt(0.975, df = n - 1)*se # error

> L1 <- mx - error # lower endpt

> L2 <- mx + error # upper endpt

> c(L1, L2)

## [1] 13.3489 16.6511

The plant ecologist is 95% confident that the population mean for heights of these un-
derstory plants is between 13.349 and 16.651 cm. If he chooses a 99% confidence interval, a
single change is required to the error term.

> error <- qt(0.995, df = n - 1)*se

> L1 <- mx - error

> L2 <- mx + error

> c(L1, L2)

## [1] 12.7624 17.2376

Confidence Intervals for the Population Variance

Just as we would like to know the population mean µ without measuring every
individual in the population, we would also like to have some clear understanding
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of the population variance σ2. For a sample we can calculate the point estimate
s2, but each sample will generate a different s2 and we don’t know the sampling
distribution that would be generated by the repeated sampling of the population.

To construct a confidence interval for the population variance, we need a ran-
dom variable that involves this parameter in its expression and whose sampling
distribution is well characterized. Fortunately,

(n− 1)s2

σ2

is such a random variable. If all possible samples of size n are drawn from a nor-
mal population with a variance equal to σ2 and for each of these samples the value
(n−1)s2

σ2 is computed, these values will form a sampling distribution called a χ2 dis-
tribution (chi-square) with ν = n− 1 degrees of freedom. These distributions each
have

µ = E(χ2) = ν and Var(χ2) = 2ν.

R provides the same sort of functions to determine χ2 distribution values as it does
for the t distributions.

dchisq(x, df)

pchisq(x, df, lower.tail = TRUE)

Details: The function dchisq( ) is used for the pdf and pchisq( ) is used for
the CDF of the distribution. x is a value of the χ2 statistic and df specifies the
degrees of freedom. The optional argument lower.tail is by default set to TRUE

so that the left tail of the density function is used. Using lower.tail = FALSE,
the function returns the value 1 - pchisq(x, df), which is the upper or the
right tail of the function.

qchisq(p, df, lower.tail = TRUE)

Details: p is the desired probability to be achieved; df specifies the degrees of
freedom, and the optional argument lower.tail specifies that the probability is
calculated in the lower tail of the distribution when TRUE, which is the default.
For an upper tail calculation set lower.tail = FALSE.

EXAMPLE 4.9. A horticultural scientist is developing a new variety of apple. One of the
important traits, in addition to taste, color, and storability, is the uniformity of the fruit size.
To estimate the variability in weights she samples 25 mature fruit and calculates a sample
variance for their weights, s2 = 4.25 g2. Develop 95% and 99% confidence intervals for the
population variance from her sample.

SOLUTION. The endpoints of a (1− α)100% confidence interval for the population variance
σ2 are given by

L1 =
(n− 1)s2

χ2
1− α

2

and L2 =
(n− 1)s2

χ2
α
2

.

where the chi-square distribution has n− 1 degrees of freedom.

> n <- 25 # sample size

> df <- n - 1 # degrees of freedom

> var <- 4.25 # variance

> L1 <- df*var/qchisq(0.975, df) # lower endpt for 95% conf int

> L2 <- df*var/qchisq(0.025, df) # upper endpt for 95% conf int

> c(L1, L2) # 95% confidence interval for the variance



48 glover & mitchell

## [1] 2.59120 8.22504

> L1.99 <- df*var/qchisq(0.995, df) # 1 - alpha/2 = 0.005

> L2.99 <- df*var/qchisq(0.005, df)

> c(L1.99, L2.99) # 99% confidence interval

## [1] 2.23888 10.31738

Confidence Intervals for a Population Proportion

Confidence intervals for many other parametric statistics can be developed, if the
sampling distribution is known or can be reasonably approximated. Consider now
the confidence interval for p, the population proportion in a binomial distribution.

EXAMPLE 4.10. A local epidemiologist wishes to determine the rate of breast cancer in
women under age 35 in a rural county in Ireland. She surveys a random sample of 1200
women in this age group and determines that exactly 6 have had this form of cancer some-
time during their lifetime. She wishes to use this information to estimate the population rate
p of breast cancer and determine a confidence interval for this estimate.

SOLUTION. Recall that a good approximation for the (1− α)100% confidence limits of a
population proportion when np̂ > 5 and n(1− p̂) > 5 is given by

L1 = p̂− z1− α
2

√
p̂(1− p̂)

n
and L2 = p̂ + z1− α

2

√
p̂(1− p̂)

n
.

The process should be familiar now. Determine the point estimate and the error.

> n <- 1200 # sample size

> p <- 6/1200 # sample proportion

> se <-sqrt(p*(1 - p)/n) # standard error

> error <- qnorm(0.975)*se # error

> L1 <- p - error # lower endpt

> L2 <- p + error # upper endpt

> c(L1, L2) # 95% confidence interval

## [1] 0.00100925 0.00899075

Choosing Sample Sizes

In some situations a researcher may wish to design a study that will produce
a confidence interval for the population proportion p of a certain pre-specified
width. This can be accomplished by using a sufficiently large sample size, n.

EXAMPLE 4.11. Using county medical records, the epidemiologist now wishes to determine
the five-year survival rate, p, of all women diagnosed with breast cancer in the 1970s. She
would like to determine p to within 2%. More precisely, she wishes to construct a 95%
confidence interval whose endpoints are within 2% of the five-year survival rate. How large
of a sample will she need to do this?

SOLUTION. Recall that a (1− α)100% confidence interval for a population proportion p will
have a margin of error no greater than the pre-specified value m, if the sample size is

n =

( z1− α
2

2m

)2
.

Since the epidemiologist wants a 95% confidence interval with a 2% margin of error, α =

0.05 and m = 0.02. Thus,
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> n <- (qnorm(0.975)/(2*0.02))^2 # required sample size

> n

## [1] 2400.91

Command Summary

dt(x, df)

pt(x, df, lower.tail = TRUE)

Details: The function dt( ) is used for the pdf and pt( ) is used for the CDF. x
is a value of the t statistic and df specifies the degrees of freedom. The optional
argument lower.tail is by default set to TRUE so that the left tail of the density
function is used. Using lower.tail = FALSE, the function returns the value 1 -

pt(x, df), which is the upper or the right tail of the function.

qt(p, df, lower.tail = TRUE)

Details: p is the desired probability to be achieved; df specifies the degrees of
freedom, and the optional argument lower.tail specifies that the probability is
calculated in the lower tail of the distribution when TRUE, which is the default.
For an upper tail calculation set lower.tail = FALSE.

dchisq(x, df)

pchisq(x, df, lower.tail = TRUE)

Details: The function dchisq( ) is used for the pdf and pchisq( ) is used for
the CDF of the distribution. x is a value of the χ2 statistic and df specifies the
degrees of freedom. The optional argument lower.tail is by default set to TRUE

so that the left tail of the density function is used. Using lower.tail = FALSE,
the function returns the value 1 - pchisq(x, df), which is the upper or the
right tail of the function.

qchisq(p, df, lower.tail = TRUE)

Details: p is the desired probability to be achieved; df specifies the degrees of
freedom, and the optional argument lower.tail specifies that the probability is
calculated in the lower tail of the distribution when TRUE, which is the default.
For an upper tail calculation set lower.tail = FALSE.





6. One-Sample Tests of Hypothesis

Hypotheses Involving the Mean (µ)

We know from Chapter 4 that sample means have a sampling distribution known
as the t distribution, and that probabilities for this distribution for various sample
sizes are well known. This knowledge and R makes hypothesis tests on the para-
metric mean relatively straightforward, as illustrated in the following examples.

The function t.test( ) is used to carry out a t test. We present a simple form
of t.test( ) in this chapter and include additional options in the next chapter.

t.test(x, mu = 0, alternative = "two.sided", conf.level = 0.95)

Details: x is the vector or table column containing the sample data. The optional
argument mu gives the hypothesized value of µ; the default is mu = 0. The op-
tional argument alternative gives the alternative hypothesis for the difference
between X and µ. The default is "two-sided" with the other possible choices be-
ing "less" or "greater". Finally, the argument conf.level gives the confidence
level to be used in the t test; the default value of 0.95 is equivalent to α = 0.05.

EXAMPLE 6.1. A forest ecologist, studying regeneration of rainforest communities in gaps
caused by large trees falling during storms, read that stinging tree, Dendrocnide excelsa,
seedlings will grow 1.5 m/yr in direct sunlight in such gaps. In the gaps in her study plot
she identified 9 specimens of this species and measured them in 2005 and again 1 year
later. Listed below are the changes in height for the 9 specimens. Do her data support the
published contention that seedlings of this species will average 1.5 m of growth per year in
direct sunlight?

1.9 2.5 1.6 2.0 1.5 2.7 1.9 1.0 2.0

SOLUTION. The ecologist is looking for deviations from 1.5 m in either direction, so this is a
two-tailed test:

H0: µd = 1.5 m/year

Ha: µd 6= 1.5 m/year.

Read and list the data in http://waveland.com/Glover-Mitchell/Example06-1.txt.

> data.Ex06.1 <- read.table("http://waveland.com/Glover-Mitchell/Example06-1.txt",

+ header = TRUE)

> data.Ex06.1

## Difference

## 1 1.9

## 2 2.5

## 3 1.6

## 4 2.0

## 5 1.5

http://waveland.com/Glover-Mitchell/Example06-1.txt


52 glover & mitchell

## 6 2.7

## 7 1.9

## 8 1.0

## 9 2.0

To carry out a t test on these data, use t.test( ) with mu = 1.5, the default two-sided
hypothesis, and the default conf.level = 0.95 (or α = 0.05).

> t.test(data.Ex06.1$Difference, mu = 1.5)

##

## One Sample t-test

##

## data: data.Ex06.1$Difference

## t = 2.3534, df = 8, p-value = 0.04643

## alternative hypothesis: true mean is not equal to 1.5

## 95 percent confidence interval:

## 1.50805 2.29195

## sample estimates:

## mean of x

## 1.9

The t.test( ) function provide two ways to answer whether µ significantly differs from
1.5 m/year. The P value is 0.046, which is smaller than α = 0.05. So there is evidence to re-
ject the null hypothesis in favor of the alternative that the mean is different from 1.5 m/year.
Equivalently, t.test( ) provides a confidence interval for the mean µ. If the hypothesized
value (here we expected µ = 1.5) falls within the confidence interval, then the null hypoth-
esis is retained. Otherwise, the null hypothesis is rejected. In this example, the 95 percent
confidence interval [1.508, 2.292] does not contain the expected value of µ. There is evi-
dence to reject the null hypothesis in favor of the alternative that the mean is different from
1.5 m/year.

EXAMPLE 6.2. Documents from the whaling industry of the Windward Islands in the Lesser
Antilles indicate that in the 1920s short-finned pilot whales weighed an average of 360 kg.
Cetologists believe that overhunting and depletion of prey species has caused the average
weight of these whales to drop in recent years. A modern survey of this species in the same
waters found that a random sample of 25 individuals had a mean weight of 336 kg and a
standard deviation of 30 kg. Are pilot whales significantly lighter today than during the
1920s?

SOLUTION. The question anticipates a deviation from the claimed value in a particular
direction, that is, a decrease in weight. This is a left-tailed test with hypotheses

H0: µ ≥ 360 kg

Ha: µ < 360 kg.

R does not provide a function to carry out a t test when the original data are not given.
However, we have created a variation on the t.test( ) function called

t.test2(mx, sx, nx, mu = 0, alternative = "two.sided", conf.level = 0.95)

Details: mx, sx, and nx are the mean, standard deviation, and sample size for the sample
x. The optional argument mu is the expected value of the mean. The default value is
mu = 0. The optional argument alternative is the alternative hypothesis. The default
is "two-sided" with the other possible choices being "less" or "greater". Finally, the
argument conf.level gives the confidence level to be used in the t test; the default
value is 0.95, which is equivalent to α = 0.05. There are additional arguments that are
discussed in the next chapter.

You can download this function using the source( ) command. The function only needs
to be downloaded once per session.
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> source("http://waveland.com/Glover-Mitchell/t.test2.txt")

## Downloaded: t.test2( ).

In this example the mean, standard deviation, and sample size are mx = 336, sx = 30,
and nx = 25, respectively. The alternative hypothesis above is that µ < 360. This means that
mu = 360 and alternative = "less".

> t.test2(mx = 336, sx = 30, nx = 25, mu = 360, alternative = "less")

##

## One Sample t-test

##

## data: mx = 336, sx = 30, and nx = 25

## t = -4, df = 24, p-value = 0.0002635

## alternative hypothesis: true mean is less than 360

## 95 percent confidence interval:

## -Inf 346.265

## sample estimates:

## mean of x

## 336

t.test2( ) provides the same two ways as t.test( ) to answer whether µ = 360. The
P value of 0.00026, which is much smaller than α = 0.05, indicates that the null hypothesis
should be rejected. Equivalently, the 95 percent confidence interval for µ is (−∞, 346.265]. The confidence interval here is one-

sided to match the t test. We have
not discussed one-sided confidence
intervals in the text. Briefly, a one-sided
95 percent confidence interval gives the
values of µ which lie in the lower (or
upper) 95 percent of the t distribution
determined by the sample. In other
words, the confidence interval describes
all values of µ that would not lead to
rejection of H0 in the corresponding
one-sided t test. In this case µ = 360 is
not among the values, so H0 is rejected.

This interval does not include the hypothesized mean of 360. There is evidence that the
mean mass of the pilot whales is smaller today than in the 1920s.

EXAMPLE 6.3. To test the effectiveness of a new spray for controlling rust mites in orchards,
a researcher would like to compare the average yield for treated groves with the average
displayed in untreated groves in previous years. A random sample of 16 one-acre groves
was chosen and sprayed according to a recommended schedule. The average yield for
this sample of 16 groves was 814 boxes of marketable fruit with a standard deviation of 40
boxes. Yields from one acre groves in the same area without rust mite control spraying have
averaged 800 boxes over the past 10 years. Do the data present evidence to indicate that the
mean yield is sufficiently greater in sprayed groves than in unsprayed groves?

SOLUTION. Anticipating a particular change, an increase in yield, means that a right-tailed
(alternative = "greater") test should be carried out:

H0: µ ≤ 800 boxes

Ha: µ > 800 boxes.

Without the original data, use t.test2( ) with sample mean mx = 814, sample standard
deviation sx = 40, sample size nx = 16, and hypothesized mean mu = 800.

> t.test2(mx = 814, sx = 40, nx = 16, mu = 800, alternative = "greater")

##

## One Sample t-test

##

## data: mx = 814, sx = 40, and nx = 16

## t = 1.4, df = 15, p-value = 0.09093

## alternative hypothesis: true mean is greater than 800

## 95 percent confidence interval:

## 796.469 Inf

## sample estimates:

## mean of x

## 814
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The P value of 0.09093 is greater than α = 0.05 indicating that the null hypothesis can-
not be rejected. Equivalently, the 95 percent confidence interval for µ is [796.469, ∞). This
interval contains the hypothesized mean of 800 boxes, so there is not sufficient evidence that
mean yield is significantly greater in sprayed groves than in unsprayed groves.

Hypotheses Involving the Variance (σ2)

Sometimes the question asked about a sample is not its central tendency but its
variability or scatter. This question requires one to frame very different H0’s and
Ha’s and to rely on a different index or test statistic to differentiate between them.

EXAMPLE 6.5. Economy-sized boxes of cornflakes average 40 oz with a standard deviation
of 4.0 oz. In order to improve quality control a new packaging process is developed that
you hope will significantly decrease variability. Thirty boxes packed by the new process are
weighed and have a standard deviation of 3.0 oz. Is there evidence that the cornflakes boxes
are significantly more uniform when packed by the new process?

SOLUTION. Recall that H0 and Ha are written in terms of the variance because we have a
sampling distribution for variances but not for standard deviations:

H0: σ2 ≥ 16.0 oz2

Ha: σ2 < 16.0 oz2.

Here n = 30 and s2 = 9.0 oz2. The statistic to test H0 is

χ2 =
(n− 1)s2

σ2 ,

and it approximates the chi-square statistic that was introduced when the confidence inter-
val for σ2 was developed in Chapter 4. This statistic will be close to n− 1 when s2 is close
to the hypothesized value σ2. Values of χ2 close to or above n − 1 support H0. If s2 is sig-
nificantly smaller than σ2, the χ2 value would be much smaller than n− 1 and Ha would be
supported. To carry out this calculation in R, first evaluate the test statistic which we will
call chi.sq.

> chi.sq <- (30-1)*9/16

> chi.sq

## [1] 16.3125

To obtain the corresponding P value, instead of looking up the result in a table, use the
function pchisq( ) to do the look-up. (See Chapter 4.) In this example a left-tailed test is
being used, so the default lower.tail = TRUE is used.

> pchisq(chi.sq, df = 29)

## [1] 0.0281868

The P value is 0.0282, which is less than α = 0.05. Reject H0, while being willing to
accept the risk of a Type I error at 0.0282.

EXAMPLE 6.6. Dugongs are large, docile marine mammals that normally occur in herds of
about 50 animals. Because the populations are being restricted by human activity along the
southeastern coast of Queensland the groups are now somewhat smaller and, therefore,
thought to be more highly inbred. Inbreeding often leads to an increase in the variability
of the size of animals among the various herds. Healthy dugong populations have a mean
weight of 350 kg and a variance of 900 kg2. A sample of 25 Moreton Bay dugongs had
a variance of 1600 kg2. Is the Moreton Bay population significantly more variable than
standard populations?
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SOLUTION. Anticipating deviations that are larger than the claimed value makes this a
right-tailed test:

H0: σ2 ≤ 900 kg2

Ha: σ2 > 900 kg2.

Here n = 25 and s2 = 1600 kg2. Under H0 we expect the χ2 statistic to be n − 1 = 24 or
smaller. Carry out the calculations in R as in the previous example. Since the test is right-
tailed or upper-tailed, set lower.tail = FALSE.

> chi.sq <- (25-1)*1600/900

> chi.sq

## [1] 42.6667

> pchisq(chi.sq, df = 24, lower.tail = FALSE)

## [1] 0.0108548

The P value is 0.0109, which is less than α = 0.05. The test statistic is extreme enough to
reject H0 and accept Ha. The analysis supports the view that the Moreton Bay population is
significantly more variable than standard populations.

EXAMPLE 6.7. A geneticist interested in human populations has been studying growth pat-
terns in American males since 1900. A monograph written in 1902 states that the mean
height of adult American males is 67.0 inches with a standard deviation of 3.5 inches. Wish-
ing to see if these values have changed over the twentieth century the geneticist measured
a random sample of 28 adult American males and found that X = 69.4 inches and s = 4.0
inches. Are these values significantly different at the α = 0.01 level from the values pub-
lished in 1902?

SOLUTION. There are two questions here—one about the mean and a second about the
standard deviation or variance. Two questions require two sets of hypotheses and two tests.

For the question about means, the hypotheses are

H0: µ = 67.0 inches

Ha: µ 6= 67.0 inches.

Use t.test2( ), where the mean, standard deviation, and sample size for the sample
are mx = 69.4, sx = 4.0, and nx = 28, respectively. The test is two-sided so the default
alternative = "two.sided" is used. The hypothesized mean is mu = 67 and finally, since
α = 0.01, set conf.level = 0.99.

> t.test2(mx = 69.4, sx = 4.0, nx = 28, mu = 67, conf.level = 0.99)

##

## One Sample t-test

##

## data: mx = 69.4, sx = 4, and nx = 28

## t = 3.1749, df = 27, p-value = 0.003726

## alternative hypothesis: true mean is not equal to 67

## 99 percent confidence interval:

## 67.3056 71.4944

## sample estimates:

## mean of x

## 69.4

The P value is 0.0037 and is smaller than α = 0.01. Equivalently, the hypothesized mean
of 67.0 in does not lie in the 99 percent confidence interval [67.306, 71.494]. Reject H0 and
say that the modern mean is significantly different from that reported in 1902.
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For the question about variances, the hypotheses are

H0: σ2 = 12.25 inches2

Ha: σ2 6= 12.25 inches2.

The question about variability is answered with a chi-square statistic. Here n = 28 and since
s = 4.0, s2 = 16.0. So

> chi.sq <- (28-1)*(4.0)^2/12.25

> chi.sq

## [1] 35.2653

This is a two-tailed test. We want to know whether this value of the chi-square statistic
is in the extreme tail of either end of the distribution. However, the pchisq( ) function
only calculates the probabilities for a lower tail or an upper tail. The calculated value of
the chi square statistic is 35.27, which exceeds the expected value E(χ2) = df = 27. So
the calculated value is in the upper tail of the distribution. To calculate a probability for a
two-sided test, double this upper-tail probability.

> 2*pchisq(chi.sq, df = 27, lower.tail = FALSE)

## [1] 0.264544

The P value is 0.265, so this indicates that the result is not a rare event. For this example
we would conclude that the mean height of adult American males is greater now than
reported in 1902, but the variability in heights is not significantly different today than in
1902.

The One-Sample Sign Test

In some investigations, a population median is known or is suspected from earlier
work. A question arises as to whether some new population is, in fact, identical to
the known population. In the text you saw that the sign test can be used to answer
such questions. R does not directly provide a sign test function. However, we have
provided one that you may use.

sign.test(x, md = 0, alternative = "two.sided", conf.level = 0.95)

Details: x is the vector or table column containing the sample data. The op-
tional argument md gives the hypothesized value of the median M to which
the individual observations will be compared; the default is md = 0. The op-
tional argument alternative gives the alternative hypothesis for the difference
between an observed value and M. The default is "two-sided" with the other
possible choices being "less" or "greater". Finally, the argument conf.level
gives the confidence level to be used in the sign test; the default value of 0.95 is
equivalent to α = 0.05.

EXAMPLE 6.8. Southeastern Queensland is home to more than 40 species of frogs. Among
them are several species of Crinia, which are small, highly variable brownish or grayish
froglets usually found in soaks, swamps, or temporary ponds. One way to distinguish these
froglets is by their lengths. A population of froglets from a single pond appear to be of the
same species. You tentatively identify them as clicking froglets C. signifera, a species known
to have a median length of 30 mm. To be honest, you are not really sure that’s what they
are. A random sample of 18 froglets is captured and their lengths (in mm) are recorded in
the table below. Is it reasonable to assume that these are clicking froglets?
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24.1 22.9 23.0 26.1 25.0 30.8 27.1 23.2 22.8
23.7 24.6 30.3 23.9 21.8 28.1 25.4 31.2 30.9

SOLUTION. A two-tailed test is appropriate since you know nothing about these froglets, so
alternative = "two.sided", which is the default. H0: M = 30 mm versus Ha: M 6= 30 mm.
So md = 30. Download the function using the source( ) command. This only needs to be
done once per session.

> source("http://waveland.com/Glover-Mitchell/sign.txt")

## Downloaded: sign.test( ).

Read in and list the data file http://waveland.com/Glover-Mitchell/Example06-8.txt.

> data.Ex06.8 <- read.table("http://waveland.com/Glover-Mitchell/Example06-8.txt",

+ header = TRUE)

> head(data.Ex06.8, n = 2)

## Length

## 1 24.1

## 2 22.9

> tail(data.Ex06.8, n = 2)

## Length

## 17 31.2

## 18 30.9

Carry out the test with α = 0.05, which is equivalent to the default conf.level = 0.95.

> sign.test(data.Ex06.8$Length, md = 30, alternative = "two.sided")

##

## One-sample Sign-Test

##

## data: x = data.Ex06.8$Length

## s = 4, p-value = 0.03088

## alternative hypothesis: true median of x is not equal to 30

## 95 percent confidence interval:

## 23.2 28.1

## sample estimates:

## median of x

## 24.8

The P value is less than α = 0.05. Likewise, the 95 percent confidence interval based on
the sign test is [23.2, 28.1] does not contain the hypothesized median of 30 mm. Based on the
evidence, it is reasonable to conclude that these are not clicking froglets.

EXAMPLE 6.9. In June of 1996 in the Finger Lakes region of New York, a series of warm days
in the middle of the month caused people to comment that it was “unusually” warm. The
median normal maximum temperature for Ithaca in June is 75◦F. Do the data (the daily
maximum temperatures for all 30 days in June) support the notion that June was unusually
warm? (Based on data reported in The Ithaca Climate Page, http://snow.cit.cornell.edu/
climate/ithaca/moncrt_06-96.html, July 2000.)

72 78 79 75 74 70 77 83 85 85

84 85 80 78 82 83 83 77 68 69

76 76 80 72 73 70 70 78 78 78

http://waveland.com/Glover-Mitchell/Example06-8.txt
http://snow.cit.cornell.edu/climate/ithaca/moncrt_06-96.html
http://snow.cit.cornell.edu/climate/ithaca/moncrt_06-96.html


58 glover & mitchell

SOLUTION. In this example there is reason to believe that temperatures were higher than
normal. Use the sign.test( ) with H0: M ≤ 75◦ versus Ha: M > 75◦, and with α = 0.05.
Set alternative = "greater" and md = 75.

> data.Ex06.9 <- read.table("http://waveland.com/Glover-Mitchell/Example06-9.txt",

+ header = TRUE)

> head(data.Ex06.9, n = 2)

## Temperature

## 1 72

## 2 78

> tail(data.Ex06.9, n = 3)

## Temperature

## 28 78

## 29 78

## 30 78

> sign.test(data.Ex06.9$Temperature, md = 75, alternative = "greater")

##

## One-sample Sign-Test

##

## data: x = data.Ex06.9$Temperature

## s = 20, p-value = 0.03071

## alternative hypothesis: true median of x is greater than 75

## 95 percent confidence interval:

## 76 Inf

## sample estimates:

## median of x

## 78

The P value is 0.0307 and is smaller than α = 0.05. Also, the 95 percent confidence
interval based on the sign test is [76, ∞) does not contain the hypothesized median of 75◦.
There is sufficient evidence to reject H0. June of 1996 was unusually warm.

Confidence Intervals Based on the Sign Test

To compute confidence intervals based on the sign test for the median of a popula-
tion one simply uses sign.test( ) with the appropriate confidence level.

EXAMPLE 6.10. Find a 95% confidence interval for the froglets in Example 6.8.

SOLUTION. Look back at Example 6.8. To determine a 95 percent confidence interval use
the sign.test( ) function with its default options conf.level = 0.95 and alternative

= "two.sided" (so neither has to be entered). Remember that the expected median was
30 mm.

> sign.test(data.Ex06.8$Length, md = 30)

##

## One-sample Sign-Test

##

## data: x = data.Ex06.8$Length

## s = 4, p-value = 0.03088

## alternative hypothesis: true median of x is not equal to 30

## 95 percent confidence interval:
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## 23.2 28.1

## sample estimates:

## median of x

## 24.8

The 95 percent confidence interval based on the sign test is [23.2, 28.1]. This interval does
not contain 30 mm, which was the median length for the clicking froglet, Crinia signifera.
This is why in Example 6.8 we rejected the hypothesis that these were clicking froglets.
But beeping froglets, C. parinsignifera have a median length of 25 mm, which does lie in the
interval. How would you interpret this?

The One-Sample WilcoxonSigned-Rank Test

Like the sign test, the purpose of the one-sample Wilcoxon signed-rank test is to
test the null hypothesis that a particular population has a hypothesized median
M0. This is carried out in R using the wilcox.test( ) function. We present a
simple form of the function in this chapter and will include additional optional
arguments in the next chapter.

wilcox.test(x, mu = 0, alternative = "two.sided", exact = NULL,

correct = TRUE, conf.int = FALSE, conf.level = 0.95)

Details: x is the sample data. The optional argument mu gives the value of the
median; the default is mu = 0. (Recall: Under the assumption of the Wilcoxon
signed-rank test the data are symmetric so the median and the mean should be
the same, so µ is used.) The optional argument alternative gives the alterna-
tive hypothesis. The default is "two-sided" with the other possible choices be-
ing "less" or "greater". By default the argument exact specifies that an exact
P value is computed, if the sample contains less than 50 values and there are no
ties. Otherwise, a normal approximation is used. The argument correct speci-
fies whether to apply the continuity correction in the normal approximation for
the P value and defaults to TRUE. The argument conf.int specifies whether a
confidence interval should be computed (TRUE) or not (FALSE), the latter being
the default. Finally, the argument conf.level gives the confidence level to be
used in the test; the default value of 0.95 is equivalent to α = 0.05.

EXAMPLE 6.11. The bridled goby, Arenigobius frenatus, occupies burrows beneath rocks
and logs on silty or muddy tidal flats in Moreton Bay. Ventral fins join at the base to form
a single disc—characteristic of the family Gobiidae. The median length is thought to be
80 mm, and the distribution of lengths is thought to be symmetric. Suppose a small sample
was collected and the following lengths (in mm) were recorded.

Researchers assumed because the sample was collected at a location adjacent to a ferry
port where there were higher than normal levels of disturbance and pollution that the bri-
dled gobies would be somewhat stunted, that is, shorter than 80 mm. Do the data collected
support this contention?

63.0 82.1 81.8 77.9 80.0 72.4 69.5 75.4 80.6 77.9

SOLUTION. Read the data from http://waveland.com/Glover-Mitchell/Example06-11.

txt.

> data.Ex06.11 <- read.table("http://waveland.com/Glover-Mitchell/Example06-11.txt",

+ header = TRUE)

> data.Ex06.11

http://waveland.com/Glover-Mitchell/Example06-11.txt
http://waveland.com/Glover-Mitchell/Example06-11.txt
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## Length

## 1 63.0

## 2 82.1

## 3 81.8

## 4 77.9

## 5 80.0

## 6 72.4

## 7 69.5

## 8 75.4

## 9 80.6

## 10 77.9

Use alternative = "less" with conf.level = 0.95. The expected median is 80 mm,
so set mu = 80. One of the gobies measured exactly 80 mm. In a calculation by hand, this
observation would be eliminated. Using R the observation is automatically eliminated, but a
warning message is generated unless you set exact = FALSE.

> wilcox.test(data.Ex06.11$Length, mu = 80, alternative = "less", exact = FALSE)

##

## Wilcoxon signed rank test with continuity correction

##

## data: data.Ex06.11$Length

## V = 7, p-value = 0.03727

## alternative hypothesis: true location is less than 80

The P value is 0.037, which is less than α = 0.05. Reject H0. There is evidence to support
that the gobies at this location are stunted.

EXAMPLE 6.13. Adult heights are known to be symmetrically distributed. We measured the
heights of 10 male faculty in the science division at Hobart and William Smith Colleges. The
median male adult height in the U.S. is supposedly 178 cm. Do the data collected support
this assertion? Set up the appropriate two-tailed hypothesis and determine whether H0 can
be rejected at the α = 0.05 level.

171 175 177 178 180 182 190 192 195 202

SOLUTION. The null hypothesis is H0: M = 178 versus the two-sided alternative Ha:
M 6= 178. Read the data from http://waveland.com/Glover-Mitchell/Example06-13.txt.

> data.Ex06.13 <- read.table("http://waveland.com/Glover-Mitchell/Example06-13.txt",

+ header = TRUE)

> data.Ex06.13

## Height

## 1 171

## 2 175

## 3 177

## 4 178

## 5 180

## 6 182

## 7 190

## 8 192

## 9 195

## 10 202

Use the defaults alternative = "two.sided" and conf.level = 0.95. The expected
median is 178 mm, so set mu = 178. One of the measurements is actually 178 cm, so exact =

FALSE. Let’s also compute a confidence interval, so set conf.int = TRUE.

http://waveland.com/Glover-Mitchell/Example06-13.txt
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> wilcox.test(data.Ex06.13$Height, mu = 178, conf.int = TRUE, exact = FALSE)

##

## Wilcoxon signed rank test with continuity correction

##

## data: data.Ex06.13$Height

## V = 36, p-value = 0.1235

## alternative hypothesis: true location is not equal to 178

## 95 percent confidence interval:

## 176.0 193.5

## sample estimates:

## (pseudo)median

## 185

The P value is 0.1235, which is greater than α = 0.05. The 95 percent confidence interval
based on the Wilcoxon signed-rank test is [176, 193.5]. This interval contains 178 cm, which
is the median height for males. Using either the P value or the confidence interval, we
cannot reject H0.

Bonus Example: Mozart and the Golden Ratio

EXAMPLE 6.14. Did Mozart use the golden ratio in his compositions? Let a and b be two
quantities, with a < b. Recall that a and b are in the golden ratio if the ratio b

a is the same
as the ratio of their sum to the larger of the two quantities, a+b

b . This ratio is denoted by

ϕ, where ϕ = 1+
√

5
2 ≈ 1.61803. In an article by J. Putz (The golden section and the piano

sonatas of Mozart. Mathematics Magazine, 68(4): 275–282), the author notes that sonatas are
typically divided into two sections: the Exposition (part a) in which the theme is introduced
and the Development and Recapitulation (part b, longer) in which the theme is developed
and revisited. The data below are the lengths of these sections (in measures) for the 29

piano sonatas of Mozart, listed by their Köchel catalog number.

Köchel a b

279, I 38 62

279, II 28 46

279, III 56 102

280, I 56 88

280, II 24 36

28Q, III 77 113

281, 1 40 69

281, II 46 60

282, I 15 18

282, III 39 63

283, I 53 67

283, II 14 23

283, III 102 171

284, I 51 76

309, I 58 97

311, 1 39 73

310, I 49 84

330, I 58 92

330, III 68 103

332, I 93 136

332, III 90 155

333, I 63 102

333, II 31 50

457, I 74 93

533, I 102 137

533, II 46 76

545, I 28 45

547a, I 78 118

570, I 79 130
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Does the ratio b
a in Mozart’s sonatas differ significantly from the golden ratio ϕ? Use a t

test with α = 0.05.

SOLUTION. Let ratio denote the ratio of b
a . The question can be framed as the following

pair of hypotheses:

H0: µratio = ϕ

Ha: µratio 6= ϕ.

Read and list the data in http://waveland.com/Glover-Mitchell/Example06-14.txt.

> data.Ex06.14 <- read.table("http://waveland.com/Glover-Mitchell/Example06-14.txt",

+ header = TRUE)

> head(data.Ex06.14, n = 3)

## Kochel a b

## 1 279,I 38 62

## 2 279,II 28 46

## 3 279,III 56 102

To carry out a t test on these data, use t.test( ) with mu = 1.61803, the default two-
sided hypothesis, and the default confidence level 0.95 (or α = 0.05). First we need to form
the ratios.

> data.Ex06.14["ratio"] <- data.Ex06.14$b/data.Ex06.14$a

> head(data.Ex06.14, n = 2)

## Kochel a b ratio

## 1 279,I 38 62 1.63158

## 2 279,II 28 46 1.64286

> tail(data.Ex06.14, n = 2)

## Kochel a b ratio

## 28 547a,I 78 118 1.51282

## 29 570,I 79 130 1.64557

The few ratios listed do look close to ϕ. Now carry out the test.

> t.test(data.Ex06.14$ratio, mu = 1.61803)

##

## One Sample t-test

##

## data: data.Ex06.14$ratio

## t = -1.7671, df = 28, p-value = 0.08811

## alternative hypothesis: true mean is not equal to 1.61803

## 95 percent confidence interval:

## 1.50068 1.62668

## sample estimates:

## mean of x

## 1.56368

The P value is 0.088, which is greater than α = 0.05, so there is insufficient evidence
to reject the null hypothesis that the ratio b

a equals ϕ. Equivalently, the 95 percent confi-
dence interval [1.500682, 1.622662] contains the expected µ value of ϕ ≈ 1.61803. The null
hypothesis cannot be rejected: Mozart’s sonata ratios do not appear to be different from ϕ.

�
What mistake was made in carrying out this analysis?

Answer:ThecollectionofMozartpianosonatasisapopulation,notasample.Thepopula-
tionratiois1.5637,notφ.

http://waveland.com/Glover-Mitchell/Example06-14.txt


7. Tests of Hypothesis Involving Two Samples

Comparing Two Variances

In R the function var.test( ) is used for an F test comparison of the variances of
two samples. The syntax for the testing variances is

var.test(x, y, ratio = 1, alternative = "two.sided", conf.level = 0.95)

Details: x and y are the vectors containing the two samples. The optional argu-
ment ratio is the null hypothesis; the default value is ratio = 1, if not spec-
ified. The optional argument alternative gives the alternative hypothesis for
the test. The default for alternative is "two-sided" with the other possible
choices being "less" or "greater". The optional argument conf.level gives the
confidence level to be used in the test; the default value of 0.95 is equivalent to
α = 0.05.

EXAMPLE 7.1. Among the few reptilian lineages to emerge from the Mesozoic extinction are
today’s reptiles. One of these, the tuatara, Sphenodon punctatum, of New Zealand, is the sole
survivor of a group that otherwise disappeared 100 million years ago. The mass (in g) of
random samples of adult male tuatara from two islets in the Cook Strait are given below. Is
the variability in mass of adult males different on the two islets?

Location A Location B

510 790 650

773 440 600

836 435 600

505 815 575

765 460 452

780 690 320

235 660

SOLUTION. The question can be framed as the following pair of hypotheses:

H0: σ2
A = σ2

B

Ha: σ2
A 6= σ2

B.

Read and list the data in http://waveland.com/Glover-Mitchell/Example07-1.txt.

> data.Ex07.1 <- read.table("http://waveland.com/Glover-Mitchell/Example07-1.txt",

+ header = TRUE)

> data.Ex07.1

## A B

## 1 510 650

## 2 773 600

## 3 836 600

## 4 505 575

http://waveland.com/Glover-Mitchell/Example07-1.txt
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## 5 765 452

## 6 780 320

## 7 235 660

## 8 790 NA

## 9 440 NA

## 10 435 NA

## 11 815 NA

## 12 460 NA

## 13 690 NA

The term NA, “not available”, indicates that there is no data at that position in the table.
(Blank entries are not allow in data frames; each row must have the same number of en-
tries.) To carry out an F test on these data, use var.test( ) with the defaults ratio = 1,
alternative = two.sided, and conf.level = 0.95 or α = 0.05.

> var.test(data.Ex07.1$A, data.Ex07.1$B)

##

## F test to compare two variances

##

## data: data.Ex07.1$A and data.Ex07.1$B

## F = 2.5173, num df = 12, denom df = 6, p-value = 0.2661

## alternative hypothesis: true ratio of variances is not equal to 1

## 95 percent confidence interval:

## 0.469106 9.385360

## sample estimates:

## ratio of variances

## 2.51734

The var.test( ) function provides two ways to answer whether the variances of the
populations are significantly different. The P value is 0.226, which is greater than α = 0.05,
so there is insufficient evidence to reject the null hypothesis that the variances are equal.
Equivalently, var.test( ) provides a confidence interval for the F value. As usual, if the
hypothesized value (here we expect the F ratio to be 1) falls within the confidence interval,
then the null hypothesis is retained. Otherwise, the null hypothesis is rejected. In this
example, the 95 percent confidence interval [0.469, 9.385] contains the expected F value
of 1. So the null hypothesis is not rejected. Continue to assume that the variances are equal.

EXAMPLE 7.2. In a fruit-processing plant the machine that is normally used to package
frozen strawberries produces packages with an average of 250 g/box. A new machine is
being considered that will process much faster, but may produce more variable results. In
order to investigate this concern, the quality control supervisor measured the contents of 50
boxes produced by each machine and found s2

O = 25 g2 and s2
N = 64 g2. From her results,

are her suspicions supported?

SOLUTION. The hypotheses are

H0: σ2
N ≤ σ2

O E(F) ≤ 1

Ha: σ2
N > σ2

O E(F) > 1.

Carry out an F test to determine whether the variances are equal. Since the original data are
not given, the var.test( ) function cannot be used. This problem was meant to be done by
hand. However, we have created a function called f.test2( ) that may be used here.

f.test2(sx, nx, sy, ny, alternative = "two.sided", conf.level = 0.95)

Details: sx and sy are the standard deviations of the two samples and nx and ny are the
corresponding sample sizes. The optional argument alternative gives the alternative
hypothesis for the test. The default for alternative is "two-sided" with the other pos-
sible choices being "less" or "greater". The optional argument conf.level gives the
confidence level to be used in the test; the default value of 0.95 is equivalent to α = 0.05.
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Notice that the test uses the standard deviations of the samples as inputs, not the variances.
Download the function using the source( ) command. The function only needs to be

downloaded once per session.
In this example, the alternative = "greater" because Ha : σ2

N > σ2
O or E(F) > 1.

Additionally, conf.level = 0.95, which is the default.

> source("http://waveland.com/Glover-Mitchell/f.test2.txt")

## Downloaded: f.test2( ).

> f.test2(sx = sqrt(64), nx = 50, sy = sqrt(25), ny = 50, alternative = "greater")

##

## F test to compare two variances

##

## data: sx = 8, nx = 50; and sy = 5, ny = 50

## F = 2.56, num df = 49, denom df = 49, p-value = 0.0006496

## alternative hypothesis: true ratio of variances is greater than 1

## 95 percent confidence interval:

## 1.59274 Inf

## sample estimates:

## ratio of variances

## 2.56

f.test2( ) provides the same two ways as var.test( ) to answer whether the variances
are significantly different. The P value is approximately 0.00065, which is much smaller
than α = 0.05, so there is strong evidence to reject the null hypothesis that the variance
of the new machine is less than or equal to the variance of the old machine. Equivalently,
f.test2( ) provides the confidence interval for the F value for the specified alternative
hypothesis. In this example, the 95% confidence interval [1.593, ∞) does not contain the
expected F value of 1. So the null hypothesis is rejected.

Testing the Difference Between Two Means of Independent Samples

In Chapter 6, the function t.test( ) was used to compare a sample mean, X, to a
theoretical mean, µ. This same function with its optional arguments can be used to
test whether two sample means are different. The function can handle both paired
and unpaired data, as well as equal or unequal variances. The general syntax is

t.test(x, y, mu = 0, alternative = "two.sided", paired = FALSE,

var.equal = FALSE, conf.level = 0.95)

Details: x and y are vectors containing the two samples. The vector y is optional
and is not used for a one-sample test as in Chapter 6. The optional argument mu
is the hypothesized value of µ in a one-sample test or the hypothesized differ-
ence between µx and µy when comparing two samples; the default value is 0.
The optional argument alternative is the alternative hypothesis. The default is
"two-sided" with the other possible choices being "less" or "greater". The ar-
gument paired indicates whether the data are paired or unpaired and defaults
to FALSE or unpaired data, if not specified. The argument var.equal specifies
whether the variances associated with x and y are equal or unequal, defaulting
to FALSE or unequal, if not specified. Finally, the argument conf.level gives the
confidence level to be used in the t test; the default value of 0.95 is equivalent
to α = 0.05.

EXAMPLE 7.3. Returning to the New Zealand tuataras in Example 7.1, we now ask the
question: Does the average mass of adult males differ between Location A and Location B?
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SOLUTION. Make use of data.Ex07.1 read in earlier. The samples are independent (not
paired), the first observation at Location A has no special relationship to any observation
at Location B. The hypothesis of equal variances was tested in Example 7.1 and H0 was
accepted. The new hypotheses about the means are

H0: µA = µB

Ha: µA 6= µB,

which leads to a two-sided test with the default µ1 − µ2 = 0. Use the default conf.level
= 0.95 or α = 0.05. Example 7.1 showed that the variances of the two populations should
be thought of as equal. So set var.equal = TRUE. The t test on these data, using the options
described, is given by

> t.test(data.Ex07.1$A, data.Ex07.1$B, var.equal = TRUE)

##

## Two Sample t-test

##

## data: data.Ex07.1$A and data.Ex07.1$B

## t = 0.8217, df = 18, p-value = 0.422

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -104.297 238.297

## sample estimates:

## mean of x mean of y

## 618 551

The P value is 0.422, which is greater than α = 0.05, so there is insufficient evidence to
reject the null hypothesis that the means are equal. Equivalently, the 95 percent confidence
interval is [−104.297, 238.297]. The hypothesized value is µ1 − µ2 = 0, which lies within
this interval. So the null hypothesis is not rejected. Continue to assume that means of the
masses of the two populations are equal.

EXAMPLE 7.4. An ornithologist studying various populations of the Australian magpie,
Gymnorhina tibicen, mist-netted 25 adults from an isolated rural area and 36 from an urban
picnic area. She measured the total body lengths in centimeters and reported the following
summary statistics:

Rural Urban

X 38 cm 35 cm
s 4 cm 3 cm
n 25 36

Because picnickers often feed the magpies, it is thought that the urban population might
be somewhat stunted due to the consumption of processed rather than natural foods. Com-
pletely analyze the data given to see if it supports this hypothesis.

SOLUTION. The samples are independent, but do they come from populations with the
same variance? Perform an F test with α = 0.05 to answer this question. The hypotheses are

H0: σ2
r = σ2

u

Ha: σ2
r 6= σ2

u .

Since the original data are not given, the function var.test( ) cannot be used. Instead use
f.test2( ) as in Example 7.2 with sx = 4, nx = 25, sy = 3, and ny = 36.

> f.test2(sx = 4, nx = 25, sy = 3, ny = 36)
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##

## F test to compare two variances

##

## data: sx = 4, nx = 25; and sy = 3, ny = 36

## F = 1.7778, num df = 24, denom df = 35, p-value = 0.1182

## alternative hypothesis: true ratio of variances is not equal to 1

## 95 percent confidence interval:

## 0.862306 3.863724

## sample estimates:

## ratio of variances

## 1.77778

The P value is 0.118, which is greater than α = 0.05. Alternatively, observe that the ex-
pected F value of 1 is in the confidence interval. The null hypothesis that the two variances
are equal cannot be rejected.

Now the question about mean size can be addressed. Are the magpies smaller in urban
areas than in rural areas?

H0: µr ≤ µu

Ha: µr > µu.

This requires a one-tailed t test because we anticipate a deviation from equality in a particu-
lar direction.

As noted in the previous chapter, R does not provide a function to carry out a t test when
the original data are not given. Just as in the previous chapter, you may use t.test2( )

with additional arguments to carry out the analysis.

t.test2(mx, sx, nx, my, sy, ny, mu = 0, alternative = "two.sided",

paired = FALSE, var.equal = FALSE, conf.level = 0.95)

Details: mx, sx, and nx are the mean, standard deviation, and sample size for the x sam-
ple and my, sy, and ny are the corresponding values for the y sample. All of the argu-
ments except mx, sx, and nx are optional. If my, sy, and ny are not present, then a one-
sample test is carried out as in Chapter 6. The optional argument mu is the expected
value of the difference in the means for a two-sample test (or the expected value of
the mean in a one-sample test). The default value is mu = 0. The optional argument
alternative is the alternative hypothesis. The default is "two-sided" with the other
possible choices being "less" or "greater". The argument paired indicates whether
the data are paired or unpaired and defaults to FALSE or unpaired data, if not specified.
The argument var.equal specifies whether the variances associated with x and y are
equal or unequal, defaulting to FALSE or unequal, if not specified. Finally, the argument
conf.level gives the confidence level to be used in the t test; the default value of 0.95 is
equivalent to α = 0.05.

Download the function, if you have not done so earlier in this session, using the source( )

command. The function only needs to be downloaded once per session.

> source("http://waveland.com/Glover-Mitchell/t.test2.txt")

## Downloaded: t.test2( ).

In this example, the mean, standard deviation, and sample size for the first sample are
mx = 38, sx = 4.0, and nx = 25, respectively. Similarly, for the second sample my = 35, sy
= 3.0, and ny = 36. The alternative hypothesis is that the mean of the rural x sample is
greater than that of the urban y sample. The F test above indicated that var.equal = TRUE.

> t.test2(mx = 38, sx = 4.0, nx= 25, my = 35, sy = 3.0, ny = 36,

+ alternative = "greater", var.equal = TRUE)

##
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## Two Sample t-test

##

## data: mx = 38, sx = 4, nx = 25; and my = 35, sy = 3, ny = 36

## t = 3.3478, df = 59, p-value = 0.0007113

## alternative hypothesis: true difference in means is greater than 0

## 95 percent confidence interval:

## 1.50253 Inf

## sample estimates:

## mean of x mean of y

## 38 35

The P value of 0.0007, which is much smaller than α = 0.05, indicates that the null
hypothesis should be rejected. Equivalently, the 95 percent confidence interval for µ1 − µ2
is [1.503, ∞). This interval does not include 0, so the null hypothesis should be rejected.
There is evidence that the mean mass of the rural magpies is greater than that of the urban
magpies.

EXAMPLE 7.5. As part of a larger study of the effects of amphetamines, a pharmacologist
wished to investigate the claim that amphetamines reduce overall water consumption. She
injected 15 standard lab rats with an appropriate dose of amphetamine and 10 with a saline
solution as controls. Over the next 24 hours she measured the amount of water consumed
by each rat and expressed the results in ml/kg body weight:

Amphetamine Saline

n 15 10

X 115 135

s 40 15

Does the amphetamine significantly suppress water consumption? Use an alpha level of
0.05 for any tests of hypotheses.

SOLUTION. First carry out a preliminary F test with α = 0.05 for the variances:

H0: σ2
A = σ2

S

Ha: σ2
A 6= σ2

S .

> f.test2(sx = 40, nx = 15, sy = 15, ny = 10)

##

## F test to compare two variances

##

## data: sx = 40, nx = 15; and sy = 15, ny = 10

## F = 7.1111, num df = 14, denom df = 9, p-value = 0.005652

## alternative hypothesis: true ratio of variances is not equal to 1

## 95 percent confidence interval:

## 1.87235 22.82169

## sample estimates:

## ratio of variances

## 7.11111

The tiny P value of 0.0057 indicates that the null hypothesis should be rejected. There is
strong evidence that the two variances are not equal.

The hypotheses for the means are

H0: µA ≥ µS

Ha: µA < µS.
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Since only the summary data are provided, use the function t.test2( ) to carry out the
analysis. The results of the F test indicate that var.equal = FALSE. From reviewing the
hypotheses for the means, alternative = "less".

> t.test2(mx = 115, sx = 40, nx = 15, my = 135, sy = 15, ny = 10,

+ alternative = "less", var.equal = FALSE)

##

## Welch Two Sample t-test

##

## data: mx = 115, sx = 40, nx = 15; and my = 135, sy = 15, ny = 10

## t = -1.7598, df = 19.2, p-value = 0.04719

## alternative hypothesis: true difference in means is less than 0

## 95 percent confidence interval:

## -Inf -0.35863

## sample estimates:

## mean of x mean of y

## 115 135

Since the P value is 0.047 is smaller than α = 0.05, reject H0. The data support the claim
that amphetamines significantly suppress water consumption.

Confidence Intervals for µ1 − µ2

A confidence interval for µ1 − µ2 at the (1 − α)100% level of confidence can be
calculated by using the t.test( ) or t.test2( ) functions. This is illustrated
below.

EXAMPLE 7.6. The magpie body lengths in Example 7.4 for the rural population were
deemed significantly longer than the body lengths for the urban population. Calculate a
95% confidence interval for the difference in mean size.

SOLUTION. Only summary data were provided, so use t.test2( ). In Example 7.4 the
variances of both populations were shown to be equal. The argument alternative =

"two.sided" is optional since it is the default.

> t.test2(mx = 38, sx = 4.0, nx = 25, my = 35, sy = 3.0, ny = 36,

+ alternative = "two.sided", var.equal = TRUE)

##

## Two Sample t-test

##

## data: mx = 38, sx = 4, nx = 25; and my = 35, sy = 3, ny = 36

## t = 3.3478, df = 59, p-value = 0.001423

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 1.20691 4.79309

## sample estimates:

## mean of x mean of y

## 38 35

Among the results is the 95% confidence interval for the difference in the means: [1.207, 4.793].
This differs only slightly from the text answer due to rounding in the hand calculations. To
get just the confidence interval, add $conf.int to the end of the command. This will print
only the confidence interval information, albeit in an ugly form. For example, to determine
a 99% confidence interval use
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> t.test2(mx = 38, sx = 4.0, nx = 25, my = 35, sy = 3.0, ny = 36,

+ var.equal = TRUE, conf.level = 0.99)$conf.int

## [1] 0.614799 5.385201

## attr(,"conf.level")

## [1] 0.99

The increase in confidence necessitates a wider interval: [0.615, 5.835].

EXAMPLE 7.7. Calculate the 95% confidence interval from Example 7.5 for the reduction in
water consumption in lab rats when they are treated with amphetamines.

SOLUTION. In Example 7.5 the variances of both populations couldn’t be assumed to be
equal. Set var.equal = FALSE or leave the argument out since it is the default.

> t.test2(mx = 115, sx = 40, nx = 15, my = 135, sy = 15, ny = 10,

+ var.equal = FALSE)$conf.int

## [1] -43.77075 3.77075

## attr(,"conf.level")

## [1] 0.95

We are 95% confident that the reduction in the amount of water consumed lies in the
interval [−43.77, 3.77] ml/kg. Notice that 0 (implying no difference) is included in this
confidence interval. What does this indicate?

The Difference Between Two Means with Paired Data

Careful design of experiments, including the use of pairing, can reduce or remove
a great deal of the variability in data that often obscures meaningful differences.

EXAMPLE 7.8. Watching an infomercial on television you hear the claim that without chang-
ing your eating habits, a particular herbal extract when taken daily will allow you to lose
5 lb in 5 days. You decide to test this claim by enlisting 12 of your classmates into an exper-
iment. You weigh each subject, ask them to use the herbal extract for 5 days and then weigh
them again. From the results recorded below, test the infomercial’s claim of 5 lb lost in 5

days.

Subject Weight before Weight after

1 128 120

2 131 123

3 165 163

4 140 141

5 178 170

6 121 118

7 190 188

8 135 136

9 118 121

10 146 140

11 212 207

12 135 126

SOLUTION. Read and list the data in http://waveland.com/Glover-Mitchell/Example07-8.

txt.

> data.Ex07.8 <- read.table("http://waveland.com/Glover-Mitchell/Example07-8.txt",

+ header = TRUE)

> tail(data.Ex07.8, n = 3)

http://waveland.com/Glover-Mitchell/Example07-8.txt
http://waveland.com/Glover-Mitchell/Example07-8.txt
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## Subject Before After

## 10 10 146 140

## 11 11 212 207

## 12 12 135 126

Because the data are paired we are not directly interested in the values presented above,
but are instead interested in the differences in the pairs of numbers. These differences are
automatically calculated by t.test( ) by setting paired = TRUE. The infomercial claim of a
5-lb loss can be written as

H0: µB − µA ≥ 5 lb

Ha: µB − µA < 5 lb.

Now carry out a paired t test on the two samples with mu = 5.

> t.test(data.Ex07.8$Before, data.Ex07.8$After, mu = 5, alternative = "less",

+ paired = TRUE)

##

## Paired t-test

##

## data: data.Ex07.8$Before and data.Ex07.8$After

## t = -0.9837, df = 11, p-value = 0.1732

## alternative hypothesis: true difference in means is less than 5

## 95 percent confidence interval:

## -Inf 5.96323

## sample estimates:

## mean of the differences

## 3.83333

The P value is 0.1732, which is greater than α = 0.05, so H0 cannot be rejected. Another
way to see this is that the confidence interval for the difference of the means is (−∞, 5.963]
and contains 5, the hypothesized value of the difference.

EXAMPLE 7.9. An experiment was conducted to compare the performance of two varieties
of wheat, A and B. Seven farms were randomly chosen for the experiment and the yields in
metric tons per hectare for each variety on each farm were recorded.

Farm Yield of variety A Yield of variety B

1 4.6 4.1
2 4.8 4.0
3 3.2 3.5
4 4.7 4.1
5 4.3 4.5
6 3.7 3.3
7 4.1 3.8

Carry out a hypothesis test to decide whether the mean yields are the same for the two
varieties.

SOLUTION. The experiment was designed to test both varieties on each farm because dif-
ferent farms may have significantly different yields due to differences in soil characteristics,
microclimate, or cultivation practices. “Pairing” the data points accounts for most of the
“between farm” variability and should make any differences in yield due solely to wheat
variety. Read and list the data.

> data.Ex07.9 <- read.table("http://waveland.com/Glover-Mitchell/Example07-9.txt",

+ header = TRUE)

> data.Ex07.9
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## Farm A B

## 1 1 4.6 4.1

## 2 2 4.8 4.0

## 3 3 3.2 3.5

## 4 4 4.7 4.1

## 5 5 4.3 4.5

## 6 6 3.7 3.3

## 7 7 4.1 3.8

The hypotheses are

H0: µA = µB

Ha: µA 6= µB.

Use t.test( ) with paired = TRUE and the defaults mu = 0 and alternative = "two.sided".

> t.test(data.Ex07.9$A, data.Ex07.9$B, paired = TRUE)

##

## Paired t-test

##

## data: data.Ex07.9$A and data.Ex07.9$B

## t = 1.9442, df = 6, p-value = 0.09986

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.0775667 0.6775667

## sample estimates:

## mean of the differences

## 0.3

The P value is 0.0999, which is greater than α = 0.05, so H0 cannot be rejected. Also the
confidence interval [−0.776, 0.678] contains 0, the hypothesized value of µd. From the data
given we cannot say that the yields of varieties A and B are significantly different.

The Wilcoxon Rank-Sum (Mann-Whitney U) Test

If there are reasons to believe that the distributions involved are normal, then tests
on the differences in the means of the two populations are carried out by using
one form or another of the t test, depending on whether variances are equal or not.
But often we don’t know anything about the populations or perhaps we know that
the distributions are not normal. In this case, the most common distribution-free
hypothesis test used is the Wilcoxon rank-sum test, also known as the Mann-
Whitney U test. This is carried out in R using the wilcox.test( ) function.

wilcox.test(x, y = NULL, alternative = "two.sided", mu = 0,

paired = FALSE, exact = NULL, correct = TRUE,

conf.int = FALSE, conf.level = 0.95)

Details: x and y are vectors containing the two samples. The vector y is optional
and is not used when carrying out a one-sample Wilcoxon signed-rank test. The
optional argument mu is the value of the hypothesized median in a one-sample
test, or the hypothesized difference between Mx and My when comparing two
medians; the default value is 0. The optional argument alternative is the al-
ternative hypothesis. The default is "two-sided" with the other possible choices
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being "less" or "greater". The argument paired indicates whether the data
are paired or unpaired and defaults to FALSE or unpaired data, if not specified.
By default the argument exact specifies whether an exact P value is computed
if the samples contain less than 50 values and there are no ties. Otherwise, a
normal approximation is used. The argument correct specifies whether to ap-
ply the continuity correction in the normal approximation for the P value and
defaults to TRUE. The argument conf.int specifies whether a confidence interval
should be computed (TRUE) or not (FALSE), the latter being the default. Finally,
the argument conf.level gives the confidence level to be used in the test; the
default value of 0.95 is equivalent to α = 0.05.

EXAMPLE 7.10. Two color morphs (green and red) of the same species of sea star were found
at Polka Point, North Stradbroke Island. One might suppose that the red color morph is
more liable to predation and, hence, those found might be smaller than the green color
morph. The following data are the radial lengths of two random samples of these sea stars
(in mm). Are red color morphs significantly smaller than green color morphs?

Red 108 64 80 92 40

Green 102 116 98 132 104 124

SOLUTION. Read and list the data in http://waveland.com/Glover-Mitchell/Example07-10.

txt.

> data.Ex07.10 <- read.table("http://waveland.com/Glover-Mitchell/Example07-10.txt",

+ header = TRUE)

> data.Ex07.10

## Red Green

## 1 108 102

## 2 64 116

## 3 80 98

## 4 92 132

## 5 40 104

## 6 NA 124

To test whether red color morphs tend to be smaller than the green, the appropriate
test is left-tailed with H0: MR ≥ MG versus Ha: MR < MG. The test is done at the α =

0.05 level. Use wilcox.test( ) with alternative = "less" and the defaults mu = 0 and
conf.level = 0.95 (equivalently, α = 0.05).

> wilcox.test(data.Ex07.10$Red, data.Ex07.10$Green, alternative = "less")

##

## Wilcoxon rank sum test

##

## data: data.Ex07.10$Red and data.Ex07.10$Green

## W = 3, p-value = 0.01515

## alternative hypothesis: true location shift is less than 0

The small P value of 0.015 is less than α = 0.05, so there is little evidence to support the
null hypothesis. Accept Ha, the red color morphs are, in fact, significantly smaller than the
green color morphs.

Note on the test statistic W in R. The careful reader may have noticed a substantial differ-
ence in the test statistic computed in the text and by R. This isn’t roundoff error. In the text,
the test statistic is the sum of the red sea star ranks,

WR = 1 + 2 + 3 + 4 + 8 = 18.

http://waveland.com/Glover-Mitchell/Example07-10.txt
http://waveland.com/Glover-Mitchell/Example07-10.txt
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Yet R reports that W = 3. This latter value is more commonly referred to as the Mann-
Whitney U statistic. That is, U = 3. When the rank sum of the smaller sample size (say n) is
calculated, the minimum possible sum is

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

In this example the minimum value would be

1 + 2 + 3 + 4 + 5 = 15.

The statistic U is the difference between this minimum value and the actual rank sum. That
is, the statistics W and U are related by

W = U +
n(n + 1)

2
.

In the case at hand, the sample size of the red sea stars is n = 5, so the example,

U +
n(n + 1)

2
= U +

5(6)
2

= 3 + 15 = 18.

The rank sum W is easier to compute by hand so it is used in the text.

The Sign Test and Paired Data

Earlier we applied the sign test to a sample drawn from a population with a
known or hypothesized median (see Section 6.4). A more common situation is a
paired comparison in which subjects are matched in pairs and the outcomes are com-
pared within each matched pair. The sign.test( ) function from Chapter 6 can be
used to answer questions about median difference with paired observations, as in
the example below.

EXAMPLE 7.11. Triglycerides are blood constituents that are thought to play a role in coro-
nary artery disease. An experiment was conducted to see if regular exercise could reduce
triglyceride levels. Researchers measured the concentration of triglycerides in the blood
serum of 7 male volunteers before and after participation in a 10-week exercise program.
The results are shown below. Note the variation in levels from one person to the next, both
before and after. But an overall pattern of reduction after exercise is clear. An obvious ques-
tion to ask is: “How much did exercise reduce triglyceride levels?” This is asking for either
a point estimate or a confidence interval for the median difference.

Before 0.87 1.13 3.14 2.14 2.98 1.18 1.60

After 0.57 1.03 1.47 1.43 1.20 1.09 1.51

SOLUTION. First download the function, if you have not already done so, using the source( )

command. Then read the data.

> source("http://waveland.com/Glover-Mitchell/sign.txt")

## Downloaded: sign.test( ).

> data.Ex07.11 <- read.table("http://waveland.com/Glover-Mitchell/Example07-11.txt",

+ header = TRUE)

> data.Ex07.11

## Before After

## 1 0.87 0.57

## 2 1.13 1.03

## 3 3.14 1.47

## 4 2.14 1.43

## 5 2.98 1.20

## 6 1.18 1.09

## 7 1.60 1.51
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In this case a right-tailed test, Ha: MBef > MAft, is called for because researchers are
testing whether regular exercise lowers triglyceride levels. So set alternative = "greater".
The null hypothesis is H0: MBef ≤ MAft, the triglyceride levels before exercise are no greater
than those after. Use the sign.test( ) with the defaults mu = 0 and conf.level = 0.95 or
α = 0.05. When two data files are specified, sign.test( ) automatically carries out a paired
test.

> sign.test(data.Ex07.11$Before, data.Ex07.11$After, alternative = "greater")

##

## Paired-samples Sign-Test

##

## data: x = data.Ex07.11$Before and y = data.Ex07.11$After

## s = 7, p-value = 0.007813

## alternative hypothesis: true median difference of x - y is greater than 0

## 95 percent confidence interval:

## 0.09 Inf

## sample estimates:

## median of x - y

## 0.3

The tiny P value of 0.0078 is less than α = 0.05, so there is little evidence to support
the null hypothesis. There is strong evidence that there is a drop in the median triglyceride
levels after exercise.

EXAMPLE 7.12. Zonation is a process of adaptation that can occur when various organisms
compete for resources in a small area and can be observed in microhabitats such as the
intertidal shoreline of a bay. Moving a distance of a meter or two perpendicular to the wa-
terline can drastically change the amounts of moisture, temperature, and salinity. Different
organisms tolerate different extremes and zonation occurs.

While at North Stradbroke Island, students carried out exercises to quantify these pro-
cesses. The intertidal zone (the shore between the lowest low tide and the highest high tide)
was divided into five equal-width bands parallel to the waterline. Square-meter quadrats
were used to repeatedly sample the various bands for marine organisms. One subset of the
data was used to study the vertical zonation of the intertidal zone by various gastropods,
such as Bembicium, Austrocochlea, and Nerita. The data below show the distribution of Be-
mbicium at 12 locations where counts were made at the mean water mark and at one zone
directly above it. Is there a difference in the median numbers of Bembicium in the two zones?

Above mid-shore 81 20 25 62 41 28 43 50 48 31 39 24

Mid-shore 135 15 31 81 59 72 66 101 36 92 59 41

SOLUTION. In this case a two-tailed test is called for since prior to the exercise students
knew little about the natural history of the organisms. The null hypothesis is H0: There
is no difference in the median numbers of Bembicium in the two zones (MAbove = MMid).
The alternative is Ha: There is evidence for a difference in the median numbers (MAbove 6=
MMid). Read and list the data in http://waveland.com/Glover-Mitchell/Example07-12.

txt and use the sign.test( ) with the defaults alternative = "two.sided" and conf.level

= 0.95.

> data.Ex07.12 <- read.table("http://waveland.com/Glover-Mitchell/Example07-12.txt",

+ header = TRUE)

> head(data.Ex07.12, n = 3)

## Above Mid

## 1 81 135

## 2 20 15

## 3 25 31

> sign.test(data.Ex07.12$Above, data.Ex07.12$Mid)

http://waveland.com/Glover-Mitchell/Example07-12.txt
http://waveland.com/Glover-Mitchell/Example07-12.txt
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##

## Paired-samples Sign-Test

##

## data: x = data.Ex07.12$Above and y = data.Ex07.12$Mid

## s = 2, p-value = 0.03857

## alternative hypothesis: true median difference of x - y is not equal to 0

## 95 percent confidence interval:

## -51 -6

## sample estimates:

## median of x - y

## -19.5

The P value is 0.0386 and is less than α = 0.05, so there is a difference in the median
numbers of Bembicium per square meter in these two zones.

The Wilcoxon Signed-Rank Test for Paired Data

The Wilcoxon signed-rank test wilcox.test( ) is easily extended to paired data
using the optional argument paired = TRUE.

EXAMPLE 7.13. Body height and arm span are related quantities; taller people generally
have longer arms. One rule of thumb says that adult height is nearly equal to adult span.
The arm spans of the 10 science faculty in Example 6.13 were also measured. Do the data
support the contention? (Height and span data are symmetric.)

Height 171 175 177 178 180 182 190 192 195 202

Span 173 178 182 182 188 185 186 198 193 202

SOLUTION. Test the null hypothesis H0: MH−S = 0 versus the two-sided alternative
hypothesis, Ha: MH−S 6= 0 at the α = 0.05 level using the Wilcoxon signed-rank test
because of the symmetry assumption. Read and list the data in http://waveland.com/

Glover-Mitchell/Example07-13.txt.

> data.Ex07.13 <- read.table("http://waveland.com/Glover-Mitchell/Example07-13.txt",

+ header = TRUE)

> data.Ex07.13

## Height Span

## 1 171 173

## 2 175 178

## 3 177 182

## 4 178 182

## 5 180 188

## 6 182 185

## 7 190 186

## 8 192 198

## 9 195 193

## 10 202 202

Though not necessary, it is often instructive to form the paired differences between the
samples.

> differences.Ex07.13 <- data.Ex07.13$Height - data.Ex07.13$Span

> differences.Ex07.13

## [1] -2 -3 -5 -4 -8 -3 4 -6 2 0

http://waveland.com/Glover-Mitchell/Example07-13.txt
http://waveland.com/Glover-Mitchell/Example07-13.txt
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Notice that there are ties in unsigned differences (2 and −2, two −3’s, and 4 and −4).
Because the presence of ties makes it impossible to compute an exact P value, this requires
setting exact = FALSE in wilcox.test( ). Use the defaults mu = 0 for the hypothesized
median difference and alternative = "two.sided".

> wilcox.test(data.Ex07.13$Height, data.Ex07.13$Span, paired = TRUE, exact = FALSE)

##

## Wilcoxon signed rank test with continuity correction

##

## data: data.Ex07.13$Height and data.Ex07.13$Span

## V = 7, p-value = 0.07479

## alternative hypothesis: true location shift is not equal to 0

The P value is 0.075, which is greater than α = 0.05, so do not reject H0. We cannot reject
the claim that adult height and arm span are nearly equal.

Notes: Suppose that you did not compute the height-span differences first and did not see
that there were tied unsigned differences. It is entirely possible that you would analyze the
data without setting exact = FALSE. Here’s what happens.

> wilcox.test(data.Ex07.13$Height, data.Ex07.13$Span, paired = TRUE)

## Warning in wilcox.test.default(data.Ex07.13$Height, data.Ex07.13$Span, paired

= TRUE): cannot compute exact p-value with ties

## Warning in wilcox.test.default(data.Ex07.13$Height, data.Ex07.13$Span, paired

= TRUE): cannot compute exact p-value with zeroes

##

## Wilcoxon signed rank test with continuity correction

##

## data: data.Ex07.13$Height and data.Ex07.13$Span

## V = 7, p-value = 0.07479

## alternative hypothesis: true location shift is not equal to 0

Warning messages are generated that ties were present as were 0-differences, so an exact
P value cannot be computed. Instead the function acts as if you had set exact = FALSE

and continues the analysis. So you still get the right answer, but your professor may be
disappointed.

A bigger issue is that if you did not set paired = TRUE, the data would be analyzed as if
they were independent samples. This means that the Wilcoxon rank sum test would have
been performed.

> wilcox.test(data.Ex07.13$Height, data.Ex07.13$Span, mu = 0, exact = FALSE)

##

## Wilcoxon rank sum test with continuity correction

##

## data: data.Ex07.13$Height and data.Ex07.13$Span

## W = 40, p-value = 0.4717

## alternative hypothesis: true location shift is not equal to 0

Notice that the P value is much larger now, 0.4717 versus 0.07479. In a different experi-
ment, this difference in P values could easily be the difference between rejecting and accept-
ing a null hypothesis. Designing experiments with paired data may remove variability and
potentially allowing researchers to make finer discriminations.





8. k-Sample Tests of Hypothesis: ANOVA

ANOVA in R

R can be used to carry out analysis of variance using the aov( ) function.

aov(y ∼ g, data = mydataframe)

Details: y is the column of response measurements (data) and g is the corre-
sponding column of treatment levels (groups) that were applied. The argument
data = mydataframe is the data frame containing the data (measurements with
corresponding treatment levels) to be analyzed.

The following examples illustrate how to use this function.

EXAMPLE 8.1. A gerontologist investigating various aspects of the aging process wanted
to see whether staying “lean and mean,” that is, being under normal body weight, would
lengthen life span. She randomly assigned newborn rats from a highly inbred line to one
of three diets: (1) unlimited access to food, (2) 90% of the amount of food that a rat of that
size would normally eat, or (3) 80% of the amount of food that a rat of that size would
normally eat. She maintained the rats on three diets throughout their lives and recorded
their lifespans (in years). Is there evidence that diet affected life span in this study?

Unlimited 90% diet 80% diet

2.5 2.7 3.1
3.1 3.1 2.9
2.3 2.9 3.8
1.9 3.7 3.9
2.4 3.5 4.0

SOLUTION. Read and list the data in http://waveland.com/Glover-Mitchell/Example08-1.

txt.

> data.Ex08.1 <- read.table("http://waveland.com/Glover-Mitchell/Example08-1.txt",

+ header = TRUE)

> data.Ex08.1

## Lifespan Diet

## 1 2.5 Unlimited

## 2 3.1 Unlimited

## 3 2.3 Unlimited

## 4 1.9 Unlimited

## 5 2.4 Unlimited

## 6 2.7 90%Diet

## 7 3.1 90%Diet

## 8 2.9 90%Diet

## 9 3.7 90%Diet

## 10 3.5 90%Diet

## 11 3.1 80%Diet

http://waveland.com/Glover-Mitchell/Example08-1.txt
http://waveland.com/Glover-Mitchell/Example08-1.txt


80 glover & mitchell

## 12 2.9 80%Diet

## 13 3.8 80%Diet

## 14 3.9 80%Diet

## 15 4.0 80%Diet

Note that the format of the data differs from the text. Each row consists of a response
(Lifespan) to a treatment level (Diet). We carry out the ANOVA using the aov( ) command
and put the result in the table aov.Ex08.1. Note that we are carrying out an analysis of
variance on Lifespan by the Diet factors. The arguments of aov( ) reflect this by using the
header names from the appropriate columns in the data frame data.Ex08.1.

> aov.Ex08.1<- aov(Lifespan ~ Diet, data = data.Ex08.1)

To actually see the results of the ANOVA, use the summary( ) command.

> summary(aov.Ex08.1)

## Df Sum Sq Mean Sq F value Pr(>F)

## Diet 2 3.15 1.573 7.7 0.0071 **
## Residuals 12 2.45 0.204

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note the two asterisks ∗∗ at the end of the Diet row in the table. Using the significance
codes in the output, this means that the F test is significant at the 0.01 level. Indeed, the
P value is given in the table as Pr(>F) = 0.00707.

To see the means by treatment use the tapply( ) function. This command is used to
apply a function (here the mean) to groups (here, Diet type) within a table or data frame. In
other words, tapply( ) can be thought of as shorthand for “table apply.”

tapply(x, g, FUN = function)

Details: x is typically a vector (column) of data and g is a list of corresponding factors of
same length as x. FUN is the function to be applied to each group of cells defined by the
categorical variables in g.

> tapply(data.Ex08.1$Lifespan, data.Ex08.1$Diet, mean)

## 80%Diet 90%Diet Unlimited

## 3.54 3.18 2.44

The box plot of the data provides an indication of whether any treatments (Diets) are
significantly different. We might not take the time to do this by hand, but R makes it easy.

> boxplot(Lifespan ~ Diet, data = data.Ex08.1)

●

●

80%Diet 90%Diet Unlimited

2.
0

2.
5

3.
0

3.
5

4.
0

Figure 8.9: The box plot of Lifespan
by Diet indicates there is a difference
between the mean lifespans of 80% and
unlimited diets. Other comparisons are
less clear.

The F test was significant (see the ANOVA table above) and the box plot indicates that
there is a difference between some mean lifespans. To carry out Bonferroni-Holm pairwise
t tests to locate any differences in mean lifespans use

pairwise.t.test(x, g, p.adjust.method = "holm", conf.level = 0.95)

Details: x is the measurement or response data, g contains the corresponding treat-
ment levels, and p.adjust.method = "holm" adjusts the P values of the sequence of
tests according to the method selected. The abbreviation p.adj may be used in place of
p.adjust.method. The optional argument conf.level gives the confidence level to be
used in the test; the default value of 0.95 is equivalent to α = 0.05. There are additional
arguments for this function that are not needed at this stage.

In this example, data.Ex08.1$Lifespan is the response data and data.Ex08.1$Diet contains
the corresponding treatment (group).
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> pairwise.t.test(data.Ex08.1$Lifespan, data.Ex08.1$Diet, p.adj = "holm")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: data.Ex08.1$Lifespan and data.Ex08.1$Diet

##

## 80%Diet 90%Diet

## 90%Diet 0.232 -

## Unlimited 0.007 0.047

##

## P value adjustment method: holm

The output of pairwise.t.test( ) is presented in tabular form. The entry in the column
80%Diet and row 90%Diet is 0.232. This is the P value for the the test of the difference in �

The listed P values are to be com-
pared directly to the value of α with no
further adjustment. Whereas in the text
we compared the computed P value pj
to α

m+1−j , pairwise.t.test( ) instead
multiplies pj by m + 1− j and now the
comparison should be to α. That is, in R
we are comparing (m + 1− j)pj to α.

means, and so is not significant at the α = 0.05 level. Similar remarks apply to the other
entries. The table indicates that the unlimited diet is different from both the 80% and 90%
diets; the corresponding P values are 0.007 and 0.047, respectively. The latter is barely
significant.

Another form of paired comparisons can be carried out using Tukey’s Honest Significant
Difference test. The corresponding R function is TukeyHSD( ).

TukeyHSD(fit, ordered = TRUE, conf.level = 0.95)

Details: fit is the output of the aov( ) function (ANOVA) carried out earlier on the
relevant data frame. The argument ordered specifies whether to order the means in
the analysis. The default is FALSE, but to more closely match the procedure in text, use
ordered = TRUE. The optional argument conf.level gives the confidence level to be used
in the test; the default value of 0.95 is equivalent to α = 0.05.

In this example, the output from the earlier ANOVA resides in aov.Ex08.1. The pairwise
comparisons are carried out at the α = 0.05 level using the default conf.level = 0.95 as
follows.

> TukeyHSD(aov.Ex08.1, ordered = TRUE)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

## factor levels have been ordered

##

## Fit: aov(formula = Lifespan ~ Diet, data = data.Ex08.1)

##

## $Diet

## diff lwr upr p adj

## 90%Diet-Unlimited 0.74 -0.0227167 1.50272 0.057470

## 80%Diet-Unlimited 1.10 0.3372833 1.86272 0.006070

## 80%Diet-90%Diet 0.36 -0.4027167 1.12272 0.443277

The results table provides a 95% confidence interval for the difference in each pair of
means and the corresponding P value. The means are significantly different at the α = 0.05
level only if 0 is not in the confidence interval. The mean of the 80% diet is different from
the mean of the unlimited diet because the confidence interval [0.337, 1.863] does not contain
0. The corresponding P value is 0.006. Using the Tukey test, 90% and unlimited diets just
fail being significantly different in this small study because p = 0.057 and the confidence
interval is [−0.023, 1.502]. This result is different than with the Bonferroni-Holm test. The
Tukey test is more conservative than the Bonferroni-Holm test. There is a smaller chance of
making a Type I error but a larger chance of making a Type II error (accepting a false null
hypothesis). In this case, a larger sample size might have given a clearer result.

EXAMPLE 8.2. A paleontologist studying Ordovician fossils collected four samples of the
trilobite Paradoxides (members of an extinct subphylum of the Arthropoda) from the same
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rock strata, but from different locations. He measured the cephalon length (in mm) of all
the specimens he collected and recorded the data below. Are there significant differences in
cephalon length among these sites?

Site

I II III IV

n 8 5 11 15

X 7.0 9.0 8.0 5.0
s 2.1 2.1 2.2 2.2
∑ Xi 56.0 45.0 88.0 75.0

R does not provide a way to carry out an ANOVA from the summary statistics
of an experiment rather than the actual data. This exercise is really meant to be
done by hand so that you can check your understanding of how ANOVA calcula-
tions actually work. Nonetheless, we provide three functions that will allow us to
carry out an ANOVA and mean separation.

aov2(SSTreat, SSError, n)

Details: SSTreat and SSError are the sums of squares required for ANOVA and
n is the vector of treatment sample sizes. This function typically requires the
preliminary calculations of SSTreat and SSError.

pairwise.holm.t.test(meanTreat, n, g, MSE)

pairwise.tukey.test(meanTreat, n, g, MSE)

Details: For both functions meanTreat is a vector containing the means of the
treatments; n is a corresponding vector containing the treatment sample sizes, g
is the vector containing the corresponding treatment names (which must be in
quotes), and MSE is the mean square error from the ANOVA in aov2( ).

All three of these functions may be downloaded at once using the source( )

command. See the example below.

SOLUTION. To carry out the analysis, we will use aov2( ) since we have only the sum-
mary statistics for the experiment and not the original data. To use aov2( ), one must first
determine SSTreat and SSError. Let’s see how this can be done in R.

> # Preparation

> # Create a vector n containing the Treatment sample sizes

> n <- c(8, 5, 11, 15)

> # Create a vector T containing the Treatment totals

> T <- c(56.0, 45.0, 88.0, 75.0)

> # Create a vector containing the Treatment means

> meanTreat <- T/n # Each treatment total is divided by its sample size

> meanTreat

## [1] 7 9 8 5

> # Create the vector of Treatment names

> g <- c("I", "II", "III", "IV")

> # Create a vector s containing the standard deviations of each Treatment sample

> s <- c(2.1, 2.1, 2.2, 2.2)

Now we are ready to carry out the ANOVA. Calculate SSTreat and SSError using the
formulæ in the text:

SSTreat = ∑
i

[
T2

i.
ni

]
− T2

..
N

.
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> # Note the order of the summing and squaring operations

> SSTreat <- sum(T^2/n) - (sum(T))^2/sum(n)

> SSTreat

## [1] 88.9231

> # Remember SSError is the sum of (n-1)s^2

> SSError = sum((n-1)*s^2)

> SSError

## [1] 164.67

> # Download aov2( ) and carry out the ANOVA

> source("http://waveland.com/Glover-Mitchell/aov2.txt")

## Downloaded: aov2( ), pairwise.holm.t.test( ), and pairwise.tukey.test( ).

> aov2(SSTreat, SSError, n)

## ANOVA with data as given

##

## SS df MS F cv Pr>(F)

## Treat 88.9231 3 29.64103 6.30009 2.87419 0.00156398

## Error 164.6700 35 4.70486 NA NA NA

The F test is significant at the 0.05 level. Indeed, the P value is Pr(>F) = 0.00156. Mean
separation is in order. The text uses the Tukey test. The appropriate source file was down
loaded with aov2( ).

> pairwise.tukey.test(meanTreat, n, g, MSE = 4.70486) # MSE from aov2

## Tukey pairwise comparisons (adjusted for any unequal sample sizes)

##

## Data: From given summary statistics

##

## q critical value for k = 4 means: q(0.05, 4, 35) = 3.814

##

## q statistics

##

## IV I III

## I 2.979 NA NA

## III 4.927 1.403 NA

## II 5.050 2.287 1.209

##

## Corresponding p values

##

## IV I III

## I 0.171065 NA NA

## III 0.007038 0.754796 NA

## II 0.005574 0.382303 0.82781

The test indicates the following relationship among the means:

IV I III II
5.0a 7.0a,b 8.0b 9.0b

If you preferred to use the Bonferroni-Holm test, use
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> pairwise.holm.t.test(meanTreat, n, g, MSE = 4.70486) # MSE from aov2

## Pairwise comparisons using Bonferroni-Holm t tests)

##

## Data: From given summary statistics

##

## p values (order and then compare directly to alpha)

##

## I II III

## II 0.344318 NA NA

## III 0.655838 0.6558383 NA

## IV 0.169744 0.0063456 0.0067323

The results are the same, though the P values are different. In general, the Tukey test
is more conservative than the Bonferroni-Holm test, there is a smaller chance of making a
Type I error but a larger chance of making a Type II error (accepting a false null hypothesis).
You should choose one or the other when you plan your analysis. Do not do both.

EXAMPLE 8.3. An endocrinologist studying genetic and environmental effects on insulin
production of pancreatic tissue raised five litters of experimental mice. At age 2 months he
sacrificed the mice, dissected out pancreatic tissue and treated the tissue specimens with
glucose solution. The amount of insulin released from these specimens was recorded in
pg/ml. Are there significant differences in insulin release among the litters?

Litter

1 2 3 4 5

9 2 3 4 8

7 6 5 10 10

5 7 9 9 12

5 11 10 8 13

3 5 6 10 11

SOLUTION. In this example the litters are a random sample of mouse litters. The goal of the
study is to determine if significant between-litter variability exists that could be attributed to
genetic differences among litters. The individual litters are not of interest. The endocrinolo-
gist is only interested in a general statement that there is significant variability among litters
(a significant genetic component) or not. This kind of study is analyzed as a random-effects
or Model II ANOVA. For this experiment the hypotheses are

H0: There is not significant variability among litters, σ2
litters = 0

Ha : There is significant variability among litters, σ2
litters > 0.

The preliminary analyses of both Model I and Model II ANOVAs are identical, but Model II
ANOVAs do not require mean separation. To do the analysis, read and list at least some of
the data in http://waveland.com/Glover-Mitchell/Example08-3.txt.

> data.Ex08.3 <- read.table("http://waveland.com/Glover-Mitchell/Example08-3.txt",

+ header = TRUE)

> head(data.Ex08.3, n = 2)

## Insulin Litter

## 1 9 I

## 2 7 I

> tail(data.Ex08.3, n = 2)

## Insulin Litter

## 24 13 V

## 25 11 V

http://waveland.com/Glover-Mitchell/Example08-3.txt
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The two columns are the measurement of the response (Insulin) and the treatment levels
(Litter). Carry out the ANOVA using the aov( ) command and put the result in the table
aov.Ex08.3. Use the summary( ) command to print out the ANOVA table.

> aov.Ex08.3 <- aov(Insulin ~ Litter, data = data.Ex08.3)

> summary(aov.Ex08.3)

## Df Sum Sq Mean Sq F value Pr(>F)

## Litter 4 83.8 20.96 3.07 0.04 *
## Residuals 20 136.4 6.82

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The asterisk ∗ at the end of the Litter row in the ANOVA table means that the F test
is significant at the 0.05 level. The P value is 0.04. Therefore there is significant variability
among the litters. The Model II ANOVA, a random effects study, has a single question in
mind that is answered with the global F test. Mean separation techniques are not done in
conjunction with this type of ANOVA.

EXAMPLE 8.4. The values in the following table are measured maximum breadths of male
Egyptian skulls from different epochs (based on data from The Ancient Races of the Thebaid,
by Thomson and Randall-Maciver, 1905, Clarendon Press). Changes in head shape over time
suggest that interbreeding occurred with immigrant populations. Use a 0.05 significance
level to test the claim that the different epochs do not all have the same mean.

4000 BCE 1850 BCE 150 CE

131 129 128

138 134 138

125 136 136

129 137 139

132 137 141

135 129 142

132 136 137

134 138 145

138 134 137

SOLUTION. Read the data file http://waveland.com/Glover-Mitchell/Example08-4.txt

and list a few rows.

> data.Ex08.4 <- read.table("http://waveland.com/Glover-Mitchell/Example08-4.txt",

+ header = TRUE)

> tail(data.Ex08.4, n = 3)

## Breadth Era

## 25 137 150CE

## 26 145 150CE

## 27 137 150CE

Carry out the ANOVA of Breadth by Era using aov( ).

> aov.Ex08.4 <- aov(Breadth ~ Era, data = data.Ex08.4)

> summary(aov.Ex08.4)

## Df Sum Sq Mean Sq F value Pr(>F)

## Era 2 139 69.4 4.05 0.031 *
## Residuals 24 411 17.1

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

http://waveland.com/Glover-Mitchell/Example08-4.txt
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The single ∗ at the end of the Era row in the table means that the F test is significant at
the 0.05 level. The P value is 0.031.

To apply the mean function to each of the treatments use the tapply( ) function.

> tapply(data.Ex08.4$Breadth, data.Ex08.4$Era, mean)

## 150CE 1850BCE 4000BCE

## 138.111 134.444 132.667

To create a box plot of Breadth by Era use

> boxplot(Breadth ~ Era, data = data.Ex08.4)
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Figure 8.10: The box plot of the
Breadths by Era indicates there may
be a difference between the means.

Since the F test was significant, carry out Bonferroni-Holm pairwise t tests to locate
differences in the mean Breadth for the various Eras. Use the pairwise.t.test( ) with the
probability adjustment set to "holm".

> pairwise.t.test(data.Ex08.4$Breadth, data.Ex08.4$Era, p.adj = "holm")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: data.Ex08.4$Breadth and data.Ex08.4$Era

##

## 150CE 1850BCE

## 1850BCE 0.14 -

## 4000BCE 0.03 0.37

##

## P value adjustment method: holm

The entry in column 150CE and row 1850BCE is 0.14, which is the P value for the the test
of the difference in means. This difference is not significant at the α = 0.05 level. Similar
remarks apply to the other entries. The table indicates that only the 150 CE and 4000 BCE
eras have significantly different mean breadths.

Alternatively, the paired comparisons can be carried out using the Tukey test using
TukeyHSD( ) applied to the results of the ANOVA, aov.Ex08.4.

> TukeyHSD(aov.Ex08.4, ordered = TRUE)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

## factor levels have been ordered

##

## Fit: aov(formula = Breadth ~ Era, data = data.Ex08.4)

##

## $Era

## diff lwr upr p adj

## 1850BCE-4000BCE 1.77778 -3.09455 6.65010 0.638624

## 150CE-4000BCE 5.44444 0.57212 10.31677 0.026465

## 150CE-1850BCE 3.66667 -1.20566 8.53899 0.166403

The results table provides a 95% confidence interval for the difference in each pair of
means and the corresponding P value. Only the 150 CE and 4000 BCE eras have signifi-
cantly different mean breadths. The result is the same as with the Bonferroni-Holm t tests.

The Kruskal-Wallis Test in R

The function kruskal.test( ) simplifies carrying out the Kruskal-Wallis test.
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kruskal.test(y ∼ g, data = mydataframe)

Details: y is the column of response measurements (data) and g is the corre-
sponding column of treatment levels (groups) that were used. The argument
data = mydataframe is the data frame containing the data (measurements with
corresponding treatment levels) to be analyzed.

EXAMPLE 8.5. Fruit bats are important dispersal agents of many species of figs. For ex-
ample, some species of fruit bats travel distances exceeding 10 km per night and thus are
capable of dispersing fig seeds over long distances. Researchers in the Philippines col-
lected uneaten fig “fragments” generated when bats were feeding, masses of masticated but
ejected fig (“ejecta”), and fecal masses (“splats”) beneath five fig trees, Ficus chrysalis, in the
mountains of Negros Island in the Philippines. Germination tests were conducted on the
seeds in these masses and the percentages of seeds germinating were recorded. Was there
a significant difference in the germination rates of fig seeds depending how the bat inter-
acted with the seeds? (Based on ideas in: Utzurrum, R and P. Heideman. 1991. Differential
ingestion of viable vs nonviable Ficus seeds by fruit bats. Biotropica 23(3): 311–312.)

Fragments Ejecta Splats

47 3 88

50 20 90

55 46 91

68 54 91

76 92

87 96

SOLUTION. Read the data file http://waveland.com/Glover-Mitchell/Example08-5.txt.

> data.Ex08.5 <- read.table("http://waveland.com/Glover-Mitchell/Example08-5.txt",

+ header = TRUE)

> head(data.Ex08.5, n = 2)

## Rate Treatment

## 1 47 Fragment

## 2 50 Fragment

> tail(data.Ex08.5, n = 2)

## Rate Treatment

## 15 92 Splat

## 16 96 Splat

The two columns are the response measurement or germination Rate and the Treatment

levels. Carry out the Kruskal-Wallis test using the kruskal.test( ) command. The anal-
ysis is to determine whether germination Rate varies by Treatment. The arguments of the
kruskal.test( ) command are the header names from the appropriate columns in the data
table data.Ex08.5.

> kruskal.test(Rate ~ Treatment, data = data.Ex08.5)

##

## Kruskal-Wallis rank sum test

##

## data: Rate by Treatment

## Kruskal-Wallis chi-squared = 10.6775, df = 2, p-value = 0.004802

The small P value (less than 0.05) indicates a significant result. The question now is
which treatments differ significantly. Paired comparisons are needed.

Before carrying out the comparisons, let’s actually look at the ranks corresponding to the
germination rates. This is accomplished by applying the rank( ) function to data.Ex08.5$Rate.

http://waveland.com/Glover-Mitchell/Example08-5.txt
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Add the ranks to the original data by creating a new column in the table data.Ex08.5 using
data.Ex08.5["Rank"] and then place the rank data into the column.

> data.Ex08.5["Rank"] <- rank(data.Ex08.5$Rate)

> data.Ex08.5

## Rate Treatment Rank

## 1 47 Fragment 4.0

## 2 50 Fragment 5.0

## 3 55 Fragment 7.0

## 4 68 Fragment 8.0

## 5 3 Ejecta 1.0

## 6 87 Ejecta 10.0

## 7 20 Ejecta 2.0

## 8 76 Ejecta 9.0

## 9 46 Ejecta 3.0

## 10 54 Ejecta 6.0

## 11 88 Splat 11.0

## 12 90 Splat 12.0

## 13 91 Splat 13.5

## 14 91 Splat 13.5

## 15 92 Splat 15.0

## 16 96 Splat 16.0

Calculate the means of the ranks by Treatment using the tapply( ) command:

> tapply(data.Ex08.5$Rank, data.Ex08.5$Treatment, mean)

## Ejecta Fragment Splat

## 5.16667 6.00000 13.50000

It appears that the germination rate for Splats may be different than the other two rates.
Though R does not provide a function to carry out the paired comparisons described in the
text, we provide pairwise.kruskal.test( ) for this task. Use the source( ) function to
download it.

pairwise.kruskal.test(x, g)

Details: x is the measurement or response data and g is the vector of corresponding
treatment levels (groups). The test is two-sided.

In this example, data.Ex08.5$Rate is the response measured and data.Ex08.5$Treatment

contains the treatment levels.

> source("http://waveland.com/Glover-Mitchell/pairwise.kruskal.txt")

> pairwise.kruskal.test(data.Ex08.5$Rate, data.Ex08.5$Treatment)

## Dunn's Multiple Comparisons for Kruskal-Wallis test (adjusted for any ties)

##

## Data: data.Ex08.5$Rate and data.Ex08.5$Treatment

##

## p values (compare directly to alpha)

##

## Ejecta Fragment

## Fragment 1.000000 NA

## Splat 0.007242 0.043786

The output of pairwise.kruskal.test( ) is presented in tabular form. The entry in the
column Ejecta and row Splat is 0.0072. This is the P value for the test of the difference in

�

The listed P values are to be com-
pared directly to the value of α with no
further adjustment. Whereas in the text
we compared the computed P value
p to α

(k
2)

, pairwise.kruskal.test( )

instead multiplies p by (k
2) and now the

comparison should be to α. That is, in R

we are comparing (k
2)p to α.

the means of these two treatments, and is significant at the α = 0.05 level. Similar remarks
apply to the other entries. The table indicates that the mean germination rate for the Splat

group differs significantly from the other two.
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EXAMPLE 8.6. Watching television has been blamed for a myriad of problems, including
contributing to the obesity “epidemic” in the United States. A recent experiment with
Cornell undergraduates indicated that the type of TV programming watched could ex-
acerbate the problem. Participants watching more stimulating programs featuring fre-
quent camera cuts and high sound variation typical in action-adventure movies con-
sumed nearly twice as much food during the program as those watching programs with
less visual and audio variation. (Tal et al. Watch what you eat: Action-related television
content increases food intake. JAMA Intern Med. Published online September 01, 2014.
doi:10.1001/jamainternmed.2014.4098.)

You decide to repeat this experiment with the help of 24 classmates. You randomly as-
sign your peers to three groups of 8. Each group is assigned to watch 30 minutes of the
same videos that were used in the Cornell experiment: The Island, the PBS interview pro-
gram Charlie Rose, and a silent version of The Island. During the viewing, your peers had
access to a generous personal supply of snacks (M&Ms, cookies, carrot sticks, and grapes).
The calories consumed by each student are recorded below.

The Island Rank Silent Rank Charlie Rose Rank

280 13 167 2 142 1

285 14 226 7 196 3

297 16 233 8 219 4

298 17 240 10 220 5

304 19 262 12 224 6

325 20 294 15 236 9

332 21 344 23 260 11

333 22 351 24 299 18

Sum 142 Sum 101 Sum 57

SOLUTION. Read the data file http://waveland.com/Glover-Mitchell/Example08-6.txt

and list the last few rows to make sure all of the data are present.

> data.Ex08.6 <- read.table("http://waveland.com/Glover-Mitchell/Example08-6.txt",

+ header = TRUE)

> tail(data.Ex08.6, n = 3)

## Calories Video

## 22 236 Rose

## 23 260 Rose

## 24 299 Rose

Carry out the Kruskal-Wallis test using

> kruskal.test(Calories ~ Video, data = data.Ex08.6)

##

## Kruskal-Wallis rank sum test

##

## data: Calories by Video

## Kruskal-Wallis chi-squared = 9.035, df = 2, p-value = 0.01092

The small P value of 0.01092 indicates a significant result. Paired comparisons are
needed to locate the differences.

As in Example 8.5, get a sense of the mean ranks by video. Use the rank( ) function
applied to data.Ex08.6$Calories to rank the calories. Create a new column in the data
table using data.Ex08.6["Rank"] and then place the actual rank data into this column.
Apply the mean function to the ranks grouped by factors using the tapply( ) command.

http://waveland.com/Glover-Mitchell/Example08-6.txt
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> data.Ex08.6["Rank"] <- rank(data.Ex08.6$Calories)

> tapply(data.Ex08.6$Rank, data.Ex08.6$Video, mean)

## Island Rose Silent

## 17.750 7.125 12.625

The Island and the Charlie Rose videos appear to have different means. Carry out paired
comparisons as in Example 8.5 using the pairwise.kruskal.test( ). The response variable
is data.Ex08.6$Calories and data.Ex08.6$Video contains the treatment levels.

> pairwise.kruskal.test(data.Ex08.6$Calories, data.Ex08.6$Video)

## Dunn's Multiple Comparisons for Kruskal-Wallis test (adjusted for any ties)

##

## Data: data.Ex08.6$Calories and data.Ex08.6$Video

##

## p values (compare directly to alpha)

##

## Island Rose

## Rose 0.007962 NA

## Silent 0.441536 0.359385

The only P value in the table that is less than α = 0.05 occurs for the comparison of
the Island and Rose treatments; consequently the median calories consumed during these
videos differ significantly.



9. Two-Factor Analysis

Randomized Complete Block Design ANOVA

EXAMPLE 9.1. One very effective way to catch salmon commercially is by gill netting. Tra-
ditionally gill netters hang long monofilament nets vertically over the fishing grounds. As
the salmon encounter these nets they become entangled in the mesh by their gill covers and
quickly die. Unfortunately many other species also become ensnared in these nets. In par-
ticular, diving sea birds such as common murres and rhinoceros auklets fall prey to gill nets.
In addition, seals and dolphins can be easily trapped in the almost invisible monofilament
nets. The sea birds and marine mammals caught and killed in gill nets are euphemistically
called “by-catch” in the fishing industry. Suppose as part of a conservation project on by-
catch reduction, three modified techniques are used on boats fishing for salmon with gill
nets.

I. White-topped gill nets (the top 7 feet of the net is white mesh that is considerably
easier to see in the water column).

II. White-topped gill nets with pingers that emit an annoying beep similar to those
made by watches with alarms.

III. Unmodified gill nets with pingers.

IV. Unmodified gill nets (standard method).

The table below lists the quantity of salmon caught per boat per day using each of these
techniques.

Catch of salmon
(100 kg/boat-day)

Day I II III IV

1 23 21 24 25

2 16 14 19 17

3 19 17 23 21

4 11 12 15 16

5 41 30 40 42

6 32 20 37 35

7 9 11 19 17

8 10 14 19 16

Are there significant differences in the quantity of salmon caught per boat per day using
these techniques?

SOLUTION. The hypotheses are

H0:µI = µII = µIII = µIV

Ha : At least one pair of the µi’s is not equal.

Read and list the data and put the result in data.Ex09.1.
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> data.Ex09.1 <- read.table("http://waveland.com/Glover-Mitchell/Example09-1.txt",

+ header = TRUE)

> tail(data.Ex09.1, n = 5)

## Day Technique Catch

## 28 G IV 17

## 29 H I 10

## 30 H II 14

## 31 H III 19

## 32 H IV 16

All 32 data values appear to be there. There are three columns: the blocks (Day), the
treatment (Technique), and the response measurement (Catch).

Carry out the ANOVA using aov( ) and put the result in the table aov.Ex09.1. The
analysis focuses on whether the Catch varies by the factors of fishing Technique and Day.
The arguments in aov( ) are the header names from the corresponding columns in the data
table data.Ex09.1. Display the results with the summary( ) command. Note how the model �

Catch now depends on both
Technique and Day. This is expressed
in the aov( ) function as Catch ∼
Technique + Day.

equation in the aov( ) function expresses Catch as a combination of Technique + Day.

> aov.Ex09.1 <- aov(Catch ~ Technique + Day, data = data.Ex09.1)

> summary(aov.Ex09.1)

## Df Sum Sq Mean Sq F value Pr(>F)

## Technique 3 259 86 10.2 0.00023 ***
## Day 7 2267 324 38.4 1.4e-10 ***
## Residuals 21 177 8

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The F test for the difference in means for the fishing Techniques is significant at the
α = 0.001 level. To determine which means are different, carry out multiple comparisons
of the means using the TukeyHSD( ) function. The data come from the ANOVA results
aov.Ex09.1. To separate the means by Technique, include "Technique" as an argument of
TukeyHSD( ). Setting the argument ordered = TRUE ensures that in each comparison the
smaller mean is subtracted from the larger one making the difference non-negative, which
simplifies the analysis.

> TukeyHSD(aov.Ex09.1, "Technique", ordered = TRUE) # Note the quotes

## Tukey multiple comparisons of means

## 95% family-wise confidence level

## factor levels have been ordered

##

## Fit: aov(formula = Catch ~ Technique + Day, data = data.Ex09.1)

##

## $Technique

## diff lwr upr p adj

## I-II 2.750 -1.297872 6.79787 0.260763

## IV-II 6.250 2.202128 10.29787 0.001656

## III-II 7.125 3.077128 11.17287 0.000405

## IV-I 3.500 -0.547872 7.54787 0.105854

## III-I 4.375 0.327128 8.42287 0.031096

## III-IV 0.875 -3.172872 4.92287 0.930127

Three of the differences have P values that are less than α = 0.05. The conclusion is
that Technique II is significantly different from both III and IV and that Technique I is
significantly different from III. The results table also provides a 95% confidence interval for
the difference in each pair of means. As usual, only when the confidence interval does not
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contain 0 is the difference between the means significant. We can summarize these results
using superscript notation. Any means with the same superscript are not significantly
different.

II I IV III
17.38a 20.12a,b 23.62b,c 24.50c

The results indicate that either method to prevent by-catch alone (white-topped gill
nets without pingers or pingers alone) does not significantly reduce the salmon catch. This
indicates that fishermen could use either white-topped gill nets or pingers (but not both) to
reduce “by-catch” and while not significantly lowering their catch of salmon.

Factorial Design Two-Way ANOVA

EXAMPLE 9.2. In an attempt to find the most effective methods for training companion dogs
for the physically challenged, an experiment was conducted to compare three different
training regimes in combination with three different reward systems. All the animals in the
study were Labrador retrievers and were 6 to 8 months old at the start of the experiment.
Individual dogs were assigned randomly to a combination of training regime and reward
system. At the end of a 10-week training period the dogs were given a standardized test to
measure their ability to function as companion dogs for the visually impaired. The results
of the test are given below:

Training regime

Reward I II III

Praise 45 51 52

69 50 18

53 62 25

51 68 32

Tangible 54 53 51

72 63 59

69 67 47

66 70 42

Praise and 91 69 66

tangible 87 73 68

89 77 70

91 74 64

The behavioral scientist running this study would like to know which training regime,
if any, is best and which reward system, if any, is best. Also, she is looking for interactions
between training regimes and reward systems. These interactions can be either positive
(synergy) or negative (interference).

SOLUTION. Read the data file http://waveland.com/Glover-Mitchell/Example09.2.txt

and list some of the data to ensure accuracy.

> data.Ex09.2 <- read.table("http://waveland.com/Glover-Mitchell/Example09-2.txt",

+ header = TRUE)

> tail(data.Ex09.2)

## Reward Training Score

## 31 PraiseAndTangible II 77

## 32 PraiseAndTangible II 74

## 33 PraiseAndTangible III 66

## 34 PraiseAndTangible III 68

## 35 PraiseAndTangible III 70

## 36 PraiseAndTangible III 64

http://waveland.com/Glover-Mitchell/Example09.2.txt
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All 36 data values appear to be present. There are three columns: the two different fac-
tors (Reward and Training) and the response measurement (Score).

Carry out the ANOVA using aov( ) and put the result in the table aov.Ex09.2. Note
the syntax: To indicate that Score possibly depends on an interaction between the Reward

system and the Training method, we use an asterisk * instead of + in the aov( ) command:
Score ∼ Reward * Training.

> aov.Ex09.2 <- aov(Score ~ Reward * Training, data = data.Ex09.2)

> summary(aov.Ex09.2)

## Df Sum Sq Mean Sq F value Pr(>F)

## Reward 2 4968 2484 38.14 1.4e-08 ***
## Training 2 2671 1335 20.50 3.8e-06 ***
## Reward:Training 4 583 146 2.24 0.091 .

## Residuals 27 1759 65

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

First investigate interactions. The hypotheses are

H0: (αβ)ij = 0 for all i, j

Ha : (αβ)ij 6= 0 for some i, j.

The test statistic is
FA×B = FReward × Training.

This is found in the third row of the ANOVA table labelled Reward:Training. FA×B =

2.24 with a corresponding P value of 0.091. This exceeds 0.05, so we don’t have evidence for
interaction here. We accept H0.

Now test the main effects for Training regimes. The hypotheses are

H0: µI = µII = µIII

Ha : At least one pair of µ’s is not equal.

From the second row of the ANOVA table, we see that the test statistic is

FB = FTraining = 20.50

with a tiny corresponding P value of 0.0000038. We have evidence that at least some Training
regimes are significantly different.

Finally, test the main effects for Reward systems. The hypotheses are

H0: µP = µT = µP+T

Ha : At least one pair of µ’s is not equal.

From the first row of the ANOVA table the test statistic is

FA = FReward = 38.14

with a corresponding P value of almost 0. We have evidence that at least some Reward systems
are significantly different.

Mean separation techniques. Separate the main effects for Training regimes using Tukey’s
test. List the mean scores by reward system and make a box plot of these data.
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> tapply(data.Ex09.2$Score, data.Ex09.2$Training, mean)

## I II III

## 69.75 64.75 49.50

> boxplot(data.Ex09.2$Score~data.Ex09.2$Training)

I II III
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Figure 9.11: The box plot of Score by
Training regime.

The box plot indicates that the results of method III may be different than the other two
methods. Confirm this with Tukey’s test. Remember to include the "Training" argument,
and for convenience set ordered = TRUE.

> TukeyHSD(aov.Ex09.2, "Training", ordered = TRUE)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

## factor levels have been ordered

##

## Fit: aov(formula = Score ~ Reward * Training, data = data.Ex09.2)

##

## $Training

## diff lwr upr p adj

## II-III 15.25 7.0811 23.4189 0.000237

## I-III 20.25 12.0811 28.4189 0.000004

## I-II 5.00 -3.1689 13.1689 0.298744

Using the P values, Training regimes I and II are not significantly different, but they are
superior to regime III.

III II I
49.5a 64.8b 69.8b

Carrying out a similar analysis for the Reward systems, determine the means:

> tapply(data.Ex09.2$Score, data.Ex09.2$Reward, mean)

## Praise PraiseAndTangible Tangible

## 48.0000 76.5833 59.4167

Praise PraiseAndTangible Tangible

20
40

60
80

Figure 9.12: The box plot of Score by
Reward system. All three means may be
significantly different.

The box plot indicates that there may be differences between means. Confirm this by using

> TukeyHSD(aov.Ex09.2, "Reward", ordered = TRUE)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

## factor levels have been ordered

##

## Fit: aov(formula = Score ~ Reward * Training, data = data.Ex09.2)

##

## $Reward

## diff lwr upr p adj

## Tangible-Praise 11.4167 3.24777 19.5856 0.004919

## PraiseAndTangible-Praise 28.5833 20.41444 36.7522 0.000000

## PraiseAndTangible-Tangible 17.1667 8.99777 25.3356 0.000050

Tukey’s test indicates that all three Reward systems are significantly different from each
other as all the P values are much smaller than 0.05. The very large F statistic (FA = 38.14)
was an early indication that differences here were dramatic. This is summarized as

P T P+T
48.0a 59.4b 76.6c
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Finally, we conclude that while praise plus tangible rewards increases the test scores the
most, either training regime I or II is better than III and no interaction between Training

regime and Reward system is indicated.

PROBLEM 9.16 (Additional Exercise). As part of a much larger study on neonatal health in
America, the birth weights of 36 newborn full-term infants were recorded in kilograms. The
principal factors of interest were the maternal age and the smoking status of the mother.
Analyze the data below appropriately, assuming normality of the birth weights.

Smoking Status of Mother

Age of Mother Non-smoker Moderate Smoker Heavy Smoker

Young < 25 years 3.63 3.35 3.23

3.45 3.30 3.05

3.40 3.31 3.18

3.51 3.20 3.40

3.60 3.25 3.19

3.55 3.43 3.15

X11. = 3.523 X21. = 3.307 X31. = 3.200

Older > 25 years 3.61 3.08 3.05

3.49 3.10 3.00

3.58 3.37 3.18

3.67 3.28 3.20

3.40 3.19 2.99

3.18 3.31 3.25

X12. = 3.488 X22. = 3.222 X32. = 3.112

∑i ∑j ∑k X2
ijk = 395.336 ∑i ∑j ∑k Xijk = T... = 119.110

SOLUTION. Read the data file http://waveland.com/Glover-Mitchell/Problem09.16.txt

and list some of the data to ensure accuracy.

> data.Prob09.16 <- read.table("http://waveland.com/Glover-Mitchell/Problem09-16.txt",

+ header = TRUE)

> tail(data.Prob09.16, n = 3)

## Age SmokingStatus Weight

## 34 Older Heavy 3.20

## 35 Older Heavy 2.99

## 36 Older Heavy 3.25

There are three columns: the two different factors (Age and SmokingStatus) and the
response measurement (Weight). Carry out the ANOVA using aov( ) and put the result in
the table aov.Prob09.16. Note the syntax: To indicate that Weight possibly depends on an
interaction Age and SmokingStatus, use

> aov.Prob09.16 <- aov(Weight ~ Age * SmokingStatus, data = data.Prob09.16)

> summary(aov.Prob09.16)

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 1 0.043 0.043 3.04 0.091 .

## SmokingStatus 2 0.771 0.385 27.02 1.9e-07 ***
## Age:SmokingStatus 2 0.005 0.003 0.19 0.830

## Residuals 30 0.428 0.014

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

http://waveland.com/Glover-Mitchell/Problem09.16.txt
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Test for interaction. Test H0: (αβ)ij = 0 for all i, j versus H0: (αβ)ij 6= 0 for some i, j. The test
statistic is

FA×B = FAge × SmokingStatus.

This is found in the third row of the ANOVA table labelled Age:SmokingStatus. FA×B =

0.19 with a corresponding P value of 0.830. This exceeds 0.05, so we don’t have evidence for
interaction here.

Test the SmokingStatus. H0: µNS = µMS = µHS versus Ha: At least one pair of µ’s is
different. Since FSmokingStatus = 27.02 has a tiny P value, reject H0. Mean birth weights are
significantly different for at least two of the levels of smoking behavior.

Test the Age of the mothers. H0: µY = µO versus Ha : µY 6= µO. FAge = 3.04 has a P value >

0.05, accept H0. Mean birth weights are not significantly different for younger and older
mothers. Mean separation is not required.

Separate main effects for SmokingStatus using Tukey’s test. List the mean scores by SmokingStatus

and make a box plot of these data.

> tapply(data.Prob09.16$Weight, data.Prob09.16$SmokingStatus, mean)

## Heavy Moderate Non-smoker

## 3.15583 3.26417 3.50583

> boxplot(data.Prob09.16$Weight ~ data.Prob09.16$SmokingStatus)
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Figure 9.13: The box plot of Weight by
SmokingStatus.

The box plot indicates that the non-smokers may be different than either of the smokers.
Confirm this with Tukey’s test. Remember to include the "SmokingStatus" argument, and
for convenience set ordered = TRUE.

> TukeyHSD(aov.Prob09.16, "SmokingStatus", ordered = TRUE)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

## factor levels have been ordered

##

## Fit: aov(formula = Weight ~ Age * SmokingStatus, data = data.Prob09.16)

##

## $SmokingStatus

## diff lwr upr p adj

## Moderate-Heavy 0.108333 -0.0118396 0.228506 0.083596

## Non-smoker-Heavy 0.350000 0.2298271 0.470173 0.000000

## Non-smoker-Moderate 0.241667 0.1214938 0.361840 0.000076

The results show that non-smokers differ from either moderate or heavy smokers, while
the difference between moderate and heavy smokers just fails to be significant (the confi-
dence interval barely contains 0). This is a slightly different answer than given in the back of
the text. The Tukey tests are more conservative than the Bonferroni-Holm tests.

The Friedman k-Sample Test: Matched Data

In R, the friedman.test( ) function makes carrying out the Friedman test rela-
tively easy.

friedman.test(x ∼ Treatment | Block, data = dataFrame)

Details: x is the measurement or response data, Treatment and Block give the
corresponding treatment levels (groups) and blocks for the data value.
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EXAMPLE 9.3. A preliminary study at Lady Elliot Island on the Great Barrier Reef was con-
ducted to investigate how different species of encrusting sponge compete for and partition
the space available on the underside of small boulders in the intertidal zone. Eight boulders
were examined and the percent cover by each of three different species of sponge (deter-
mined by color) was estimated by using a grid. Is there a difference in the space colonized
by the different species of sponges?

Boulder Peach Black Cream

1 30 35 8

2 17 10 5

3 33 18 12

4 18 34 2

5 25 20 25

6 50 15 11

7 40 20 6

8 19 5 14

SOLUTION. Read the data file http://waveland.com/Glover-Mitchell/Example09.3.txt

and list the data.

> data.Ex09.3 <- read.table("http://waveland.com/Glover-Mitchell/Example09-3.txt",

+ header = TRUE)

> head(data.Ex09.3, n = 2)

## Boulder Color Space

## 1 1 Peach 30

## 2 2 Peach 17

> tail(data.Ex09.3, n = 2)

## Boulder Color Space

## 23 7 Cream 6

## 24 8 Cream 14

There are three columns: the percentage of Space occupied, the Color of the sponge, and
Boulder number that acts as the block. Carry out the Friedman test using

> friedman.test(Space ~ Color | Boulder, data = data.Ex09.3)

##

## Friedman rank sum test

##

## data: Space and Color and Boulder

## Friedman chi-squared = 7.8065, df = 2, p-value = 0.02018

The result is significant; the P value is smaller than α = 0.05. The median space occupied
by sponges differs significantly by Color. Note: The test statistic differs slightly from the
one in the text because a small adjustment has been made for the tied ranks.

Paired Comparisons

When the Friedman test indicates that we are able to reject H0, we can use a method of
paired comparisons to pinpoint where the differences lie. If we have k populations (treat-
ments), then there are (k

2) = k(k−1)
2 possible pairs of treatments that can be compared that

lead to (k
2) tests of the form:

• H0: The effects of the ith and jth treatments are the same.

• Ha: The effects of the ith and jth treatments are different.

http://waveland.com/Glover-Mitchell/Example09.3.txt
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Though R does not provide a function to carry out paired comparisons as described in
the text, we provide pairwise.friedman.test( ) to carry out this task. Use the source( )

function to download it.

pairwise.friedman.test(x, treatment, block)

Details: x is the measurement or response data, treatment gives the treatment levels, and
block gives the experimental blocks. The test is two-sided. The P values are compared
directly to α.

In this example, Space is the response measured, each Boulder is a block, and each Color is
a treatment (group).

> source("http://waveland.com/Glover-Mitchell/pairwise.friedman.txt")

> pairwise.friedman.test(data.Ex09.3$Space, data.Ex09.3$Color, data.Ex09.3$Boulder)

## Paired comparisons for Friedman test

##

## Data: data.Ex09.3$Space and data.Ex09.3$Color

##

## p values (compare directly to alpha)

##

## Black Cream

## Cream 0.507394 NA

## Peach 0.507394 0.0178786

The output of pairwise.friedman.test( ) is presented in tabular form. The entry in the
column Black and row Cream is 0.507. This is the P value for the the test of the difference in
median Space occupied, and is not significant at the α = 0.05 level. The table indicates that
only sponges of colors Peach and Cream differ significantly in area they occupy on boulders.

EXAMPLE 9.4. The nature of the light reaching the rainforest floor is quite different from that
in the canopy and the understory. One difference is wavelength. A study was conducted
to examine the adaptations to light wavelength of 10 different fern species found on the
rainforest floor. Each block consisted of 4 mature ferns of the same species. Each fern was
grown in the dark for two weeks. One plant of each species was assigned to each of the 4

light treatments. Each plant was exposed to a single dose of light (wavelength measured
in nm), returned to the dark, and 24 hours later the increase in the cross-sectional area of
the fern tip was measured (in µm2). Was there a significant difference in growth among the
light treatments? Analyze with a Friedman test.

Species 400 nm 500 nm 600 nm 700 nm

A 960 800 950 910

B 780 750 700 630

C 1130 1040 1050 1000

D 670 740 630 610

E 790 770 700 720

F 960 720 810 820

G 1110 1000 1040 980

H 930 970 910 860

I 920 850 840 820

J 880 860 920 830

SOLUTION. Use the Friedman test at the α = 0.05 level. Read the data file http://

waveland.com/Glover-Mitchell/Example09.4.txt and list the data.

> data.Ex09.4 <- read.table("http://waveland.com/Glover-Mitchell/Example09-4.txt",

+ header = TRUE)

> tail(data.Ex09.4, n = 3)

## Species Wavelength Area

http://waveland.com/Glover-Mitchell/Example09.4.txt
http://waveland.com/Glover-Mitchell/Example09.4.txt
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## 38 H 700nm 860

## 39 I 700nm 820

## 40 J 700nm 830

The response measurement is the leaf tip Area, the Wavelength is the treatment, and each
Species acts as a block. Analyze using the friedman.test( ).

> friedman.test(Area ~ Wavelength | Species, data = data.Ex09.4)

##

## Friedman rank sum test

##

## data: Area and Wavelength and Species

## Friedman chi-squared = 15.96, df = 3, p-value = 0.001156

The result is significant since the P value is much smaller than α = 0.05. Paired com-
parisons should be carried out using the pairwise.friedman.test( ) as in Example 9.3.

> pairwise.friedman.test(data.Ex09.4$Area, data.Ex09.4$Wavelength,

+ data.Ex09.4$Species)

## Paired comparisons for Friedman test

##

## Data: data.Ex09.4$Area and data.Ex09.4$Wavelength

##

## p values (compare directly to alpha)

##

## 400nm 500nm 600nm

## 500nm 0.226001533 NA NA

## 600nm 0.146060302 1.000000 NA

## 700nm 0.000407074 0.340481 0.499587

Only the shortest and longest wavelengths produce significantly different growth.



10. Linear Regression and Correlation

Introduction

In this chapter we present analyses to determine the strength of relationship between
two variables. In the case of linear regression, we will examine the amount of
variability in one variable (Y, the dependent variable) that is explained by changes
in another variable (X, the independent variable). Correlation analysis is used
when both variables are experimental and measured with error.

Linear Regression

To carry out a linear regression analysis, make use of R’s linear model function
lm( ). Remember in carrying out such an analysis the assumption is that the de-
pendent variable Y is a linear function of X and, thus, there exist constants a and b
so that

Y = a + bX.

Here b is the slope and a is the Y-intercept. (You may have written the equation of
a line as y = mx + b, where m is the slope and b is the intercept. The idea is the
same, but in the context of regression different letters are used.)

lm(y ∼ x, data = dataFrame)

Details: y is the measurement or response data while x is the independent vari-
able typically under the experimenter’s control, and data = dataFrame specifies
the data frame in which x and y reside. Note the order of the input variables, y
is entered first and x second. Reversing them changes the result.

It is also helpful to make scatterplots of the data in a regression. This can be
quickly accomplished with R’s plot( ) command.

plot(x, y, main = "Title", xlab = "x-label", ylab = "y-label")

plot(dataFrame, main = "Title", xlab = "x-label", ylab = "y-label")

Details: In the first case x is the independent variable and y is the measurement
or response data. Note the order of the input variables, x is entered first and y

second. This is the reverse of the order for lm( ). In the second case, dataFrame
is a data frame with the independent variable x in the first column and the
corresponding dependent or response variable y in the second column. The
remaining arguments are optional, but useful. main = "Title" places the “Title”
at the top of the plot and xlab = "x-label" and ylab = "y-label" are are used
to label the horizontal and vertical axes. There are other optional arguments that
are discussed later.



102 glover & mitchell

EXAMPLE 10.1. An introductory biology student wishes to determine the relationship be-
tween temperature and heart rate in the common leopard frog, Rana pipiens. He manipulates
the temperature in 2

◦ increments ranging from 2 to 18
◦C and records the heart rate (beats

per minute) at each interval. His data are presented below. Complete a regression analysis.

X Y
Recording Temperature Heart rate

number (◦Celsius) (bpm)

1 2 5

2 4 11

3 6 11

4 8 14

5 10 22

6 12 23

7 14 32

8 16 29

9 18 32

SOLUTION. Start by reading the data and listing it.

> data.Ex10.1 <- read.table("http://waveland.com/Glover-Mitchell/Example10-1.txt",

+ header = TRUE)

> tail(data.Ex10.1, n = 3)

## Temperature HrtRt

## 7 14 32

## 8 16 29

## 9 18 32

Note the form of the data: Each row consists of a temperature and the corresponding
heart rate. To determine whether there may be a linear relation between these two variables,
begin by making a scatterplot of the data.

> plot(data.Ex10.1$Temperature, data.Ex10.1$HrtRt, main = "Heart Rate

vs Temperature", xlab = "Temperature (C)", ylab = "BPM")

As noted above, the following command also would have plotted the data.

> plot(data.Ex10.1, main = "Heart Rate vs Temperature",

+ xlab = "Temperature (C)", ylab = "BPM")
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Figure 10.14: A scatterplot of
data.Ex10.1$HrtRt versus
data.Ex10.1$Temperature.

Next, carry out the preliminary calculations for the regression analysis using the lm( )

function. The response variable is HrtRt and the independent variable is Temperature.

> lm.Ex10.1 <- lm(HrtRt ~ Temperature, data = data.Ex10.1)

> lm.Ex10.1 # print the results

##

## Call:

## lm(formula = HrtRt ~ Temperature, data = data.Ex10.1)

##

## Coefficients:

## (Intercept) Temperature

## 2.14 1.78

The results state that the intercept of the least squares regression line is a = 2.14 and the
slope is b = 1.78. Thus, the equation of the regression line is

Y = 2.14 + 1.78X or, more precisely, Ŷi = 2.14 + 1.78Xi.

In the text, the equation of the regres-
sion line was given as

Ŷi = 19.9 + 1.78(Xi − 10.0).

But this is the same as

Ŷi = 19.9 + 1.78Xi − 17.8 = 2.1 + 1.78Xi ,

which is the equation that R yields up
to rounding error.To plot the regression line use an additional function with the plot( ) command.
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abline(a, b, col = "color")

Details: a is the intercept of the line and b is the slope, hence the name abline( ). The
optional argument col = "color" causes the line to be drawn in the selected color,
with the default being "black". The command should immediately follow a plot( )

command and the line will be included in the plot.

In the context of this regression question, a and b can be specified by using lm.Ex10.1.

> plot(data.Ex10.1, main = "Heart Rate vs Temperature",

+ xlab = "Temperature (C)", ylab = "BPM")

> abline(lm.Ex10.1, col = "red") # lm.Ex10.1 consists of intercept a and slope b
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Figure 10.15: A scatterplot of
data.Ex10.1$HrtRt versus
data.Ex10.1$Temperature with re-
gression line.

After the regression equation is calculated, test whether or not it explains a significant
portion of the variability in the Y’s. The hypotheses are H0: β = 0 and Ha : β 6= 0. The test is
carried out using ANOVA with the aov( ) command as in Chapter 8.

> aov.Ex10.1 <- aov(HrtRt ~ Temperature, data = data.Ex10.1)

> summary(aov.Ex10.1)

## Df Sum Sq Mean Sq F value Pr(>F)

## Temperature 1 756 756 109 0.000016 ***
## Residuals 7 49 7

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The P value is tiny, so H0 is rejected: A significant portion of the variability in heart rate
is explained by linear regression on temperature.

EXAMPLE 10.3. For Example 10.1, find the following:

• 95% confidence interval for β.

• 95% confidence interval for µY|9◦ , the mean heart rate at 9◦C.

• 95% confidence interval for µY|17◦ , the mean heart rate at 17◦C.

SOLUTION. To find a 95% confidence interval for β, use the confint( ) function.

confint(linear.model, level = 0.95)

Details: linear.model contains the results of a linear regression model and the optional
argument level is the desired confidence level. The default is 0.95.

In this example, the linear regression results are contained in lm.Ex10.1. Since the default
confidence level is 0.95, simply use

> confint(lm.Ex10.1)

## 2.5 % 97.5 %

## (Intercept) -2.39401 6.67179

## Temperature 1.37224 2.17776

While our estimate of the slope is 1.78, we are 95% confident that the true slope β is
between 1.372 and 2.178. As expected from the ANOVA table, 0 is not included in this
interval. For a 0.99 confidence interval use

> confint(lm.Ex10.1, level = 0.99)

## 0.5 % 99.5 %

## (Intercept) -4.56950 8.84728

## Temperature 1.17894 2.37106

To find a 95% confidence interval for µY|9◦ requires another new command. First create a
data frame containing the Temperature for which you want the confidence interval.
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> new <- data.frame(Temperature = 9)

> new

## Temperature

## 1 9

Now use the predict( ) function to determine the confidence interval.

predict(linear.model, newData, interval = "confidence", level = 0.95)

Details: linear.model contains the results of a linear regression model, newData is a
data frame containing the values for which you want the confidence level. If newData is
missing, the x values from linear.model are used. The optional argument interval =

"confidence" indicates that the output should contain a confidence interval as well as
the predicted mean, and the optional argument level is the desired confidence level. The
default is 0.95.

The linear regression results are contained in lm.Ex10.1, so use

> predict(lm.Ex10.1, new, interval = "confidence") # note the quotes!

## fit lwr upr

## 1 18.1139 15.9954 20.2324

Using the regression equation, the predicted mean heart rate at 9◦ is µ̂Y|9◦ = 18.11. The
95% confidence interval is [16.00, 20.23].

To find a 95% confidence interval for µY|17◦ , we could simply repeat the process above.
However, it is possible to determine confidence intervals for multiple temperatures in a
single command by including all of the temperatures in the new data frame. For example, to
find the confidence intervals for µY|9◦ , µY|17◦ , and µY|21◦ , first create the data frame with the
three temperatures.

> new <- data.frame(Temperature = c(9, 17, 21))

> new

## Temperature

## 1 9

## 2 17

## 3 21

Then use predict( ) exactly as above.

> predict(lm.Ex10.1, new, interval = "confidence")

## fit lwr upr

## 1 18.1139 15.9954 20.2324

## 2 32.3139 28.8104 35.8174

## 3 39.4139 34.5196 44.3081

This produces the predicted means (in the fit column) and the lower and upper bounds
for 95% confidence intervals (the lwr and upr columns) for each temperature. Note the
increase in confidence interval width as X gets farther from X.

Many statistics programs include options to graph confidence bands and R is no excep-
tion. The lines( ) command can be used to draw the band boundaries.

lines(x, y, col = "color", lty = "lineType")

Details: x is the independent variable and y is the dependent variable; col = "color"

specifies the color; and lty = "lineType" specifies the line type such as "solid",

"dashed", "dotted", "dotdash", "longdash", or "twodash". There are additional
optional arguments that are not relevant at this point. The command should immediately
follow a plot( ) command and it will automatically be included in the plot.
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In this example, the independent variable x is data.Ex10.1$Temperature, which is used
by default since no newData are specified. The dependent variable comes from creating the
y-coordinates of the confidence intervals for the mean heart rate at the temperatures used.
So first we must obtain these confidence intervals using the predict( ) function with the
default level = 0.95.

> # put the result into a data frame

> fitted <- as.data.frame(predict(lm.Ex10.1, interval = "confidence"))

> fitted

## fit lwr upr

## 1 5.68889 1.85386 9.52392

## 2 9.23889 6.05056 12.42722

## 3 12.78889 10.15808 15.41970

## 4 16.33889 14.10851 18.56927

## 5 19.88889 17.80905 21.96873

## 6 23.43889 21.20851 25.66927

## 7 26.98889 24.35808 29.61970

## 8 30.53889 27.35056 33.72722

## 9 34.08889 30.25386 37.92392

The lwr and upr columns will be the y-coordinates for the boundary curves. The x-
coordinates of the boundary curves are the original temperatures in data.Ex10.1$Temperature,
which is used by default since no newData are specified. To create the final graph, plot the
original data and then the regression line as above. Finally add the boundary curves of the
confidence bands with lines( ) commands.

> # the original data

> plot(data.Ex10.1, main = "Heart Rate versus Temperature",

+ xlab = "Temperature (C)", ylab = "BPM")

> # the least squares regression line

> abline(lm.Ex10.1, col = "red")

> # lower boundary curve

> lines(data.Ex10.1$Temperature, fitted$lwr, col = "blue", lty = "longdash")

> # upper boundary curve

> lines(data.Ex10.1$Temperature, fitted$upr, col = "blue", lty = "longdash")
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Figure 10.16: A scatterplot of
data.Ex10.1$HrtRt versus
data.Ex10.1$Temperature with re-
gression line and 95% confidence
interval boundaries.

Simple Linear Correlation Analysis: Pearson Correlation Coefficient

Correlation analysis is used to measure the intensity of association observed be-
tween any pair of variables. A widely used index of the association of two quanti-
tative variables is the Pearson product-moment correlation coefficient.

EXAMPLE 10.2. A malacologist interested in the morphology of West Indian chitons, Chiton
olivaceus, measured the length (anterior-posterior) and width of the eight overlapping plates
composing the shell of 10 of these animals. Her data (in cm) are presented below:

Animal Length Width

1 10.7 5.8
2 11.0 6.0
3 9.5 5.0
4 11.1 6.0
5 10.3 5.3
6 10.7 5.8
7 9.9 5.2
8 10.6 5.7
9 10.0 5.3

10 12.0 6.3
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Analyze these data as a correlation problem.

SOLUTION. Start by reading the data and listing it.

> data.Ex10.2 <- read.table("http://waveland.com/Glover-Mitchell/Example10-2.txt",

+ header = TRUE)

> data.Ex10.2

## Length Width

## 1 10.7 5.8

## 2 11.0 6.0

## 3 9.5 5.0

## 4 11.1 6.0

## 5 10.3 5.3

## 6 10.7 5.8

## 7 9.9 5.2

## 8 10.6 5.7

## 9 10.0 5.3

## 10 12.0 6.3

To determine whether there may be a linear relation between these two variables, begin
by making a scatterplot of the data.

> plot(data.Ex10.2$Length, data.Ex10.2$Width, main = "Scatterplot Width

versus Length", xlab = "Length (cm)", ylab = "Width (cm)")
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Figure 10.17: A scatterplot of
data.Ex10.2$Width versus
data.Ex10.2$Length.

To carry out the correlation analysis use

cor.test(x, y, method = "testMethod", conf.level = 0.95)

Details: x and y are paired data vectors of the same length; method = "testMethod"

specifies the correlation method to be used. The default method is "pearson" and the
other options are the non-parametric methods "kendall" and "spearman". As usual
conf.level specifies the confidence level at which the test is to be run with the default
being 0.95, which is equivalent to α = 0.05. There are other options that will be detailed
when the non-parametric methods are discussed.

In this example the data are contained in data.Ex10.2$Length and data.Ex10.2$Width.
Use method = "pearson" and the default conf.level = 0.95. To determine the correlation
coefficient and test the hypotheses H0: ρ = 0 and Ha : ρ 6= 0 with α = 0.05 use

> cor.test(data.Ex10.2$Length, data.Ex10.2$Width, method = "pearson",

+ conf.level = 0.95)

##

## Pearson's product-moment correlation

##

## data: data.Ex10.2$Length and data.Ex10.2$Width

## t = 11.136, df = 8, p-value = 3.781e-06

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## 0.871327 0.992922

## sample estimates:

## cor

## 0.969226

The correlation coefficient (sample estimate) is r = 0.9692. The very small P value of
0.0000038 means that H0 should be rejected: There is a strong linear correlation between
length and width of chiton shells. The confidence interval for ρ is [0.871, 0.993]. The interval
does not contain 0, confirming that the null hypothesis should be rejected.



an introduction to biostatistics using r 107

Correlation Analysis Based on Ranks

Kendall’s Measure of Correlation τ

The Kendall correlation coefficient depends on a direct comparison of the n obser-
vations (Xi, Yi) with each other.

EXAMPLE 10.5. There have been several studies of the relative age effect on various types
of achievement (e.g., academic, sport, and social). Briefly, relative age effects may occur
whenever there are minimum age requirements for participation in an activity. For example,
for entrance into kindergarten in Geneva, New York, where the authors reside, a child must
be 5 by December 1 of the current school year. Consequently, on December 1, children in the
same kindergarten class can range in age from a minimum of 5 years, 0 days (those born on
December 1) to 5 years, 364 days (those born on December 2). Similarly, to participate on
athletic teams (soccer, little league, etc.) children must attain a minimum age by a certain
date, again leading to a 1-year age difference in initial cohorts of participants. Are these
differences in ages associated with differences in performance, that is, are there relative age
effects?

A study by DeMeis and Stearns examined relative age effects on academic and social
performance in Geneva. The data in the following table come from one part of their study,
which examined the number of students in grades K through 4 evaluated for the district’s
Gifted and Talented Student Program.

The first and second columns give the month after the cut-off date in which the student
was born. The third column lists the number of students in each month cut-off category in
grades K through 4 evaluated for the district’s Gifted and Talented Student Program.

Birth month Month after cut-off Students evaluated

December 1 53

January 2 47

February 3 32

March 4 42

April 5 35

May 6 32

June 7 37

July 8 38

August 9 27

September 10 24

October 11 29

November 12 27

The table shows that, in general, the older students (those with birth dates in the first
few months after the cut-off date) tend to be overrepresented and younger students un-
derrepresented in those evaluated for the district’s Gifted and Talented Student Program.
For example, the month of December (the first month after the cut-off date) had the most
referrals. Is there a correlation between these two measurements? Determine Kendall’s
correlation coefficient τ and determine whether it is significantly different from 0 at the
α = 0.05 level. (Based on data reported in: DeMeis, J. and E. Stearns. 1992. Relationship of
school entrance age to academic and social performance. The Journal of Educational Research,
86: 20–27.)

SOLUTION. Start by reading the data and listing it.

> data.Ex10.5 <- read.table("http://waveland.com/Glover-Mitchell/Example10-5.txt",

+ header = TRUE)

> data.Ex10.5

## Month AfterCutOff Students

## 1 December 1 53
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## 2 January 2 47

## 3 February 3 32

## 4 March 4 42

## 5 April 5 35

## 6 May 6 32

## 7 June 7 37

## 8 July 8 38

## 9 August 9 27

## 10 September 10 24

## 11 October 11 29

## 12 November 12 27

To carry out a correlation analysis using Kendall’s measure of correlation, again use
cor.test( ) but with method = "kendall". In this example the data are contained in
data.Ex10.5$AfterCutOff and data.Ex10.5$Students. To determine the correlation co-
efficient and test the hypotheses H0: τ = 0 and Ha : τ 6= 0 with α = 0.05 use

> cor.test(data.Ex10.5$AfterCutOff, data.Ex10.5$Students, method = "kendall",

+ conf.level = 0.95)

## Warning in cor.test.default(data.Ex10.5$AfterCutOff, data.Ex10.5$Students, :

Cannot compute exact p-value with ties

##

## Kendall's rank correlation tau

##

## data: data.Ex10.5$AfterCutOff and data.Ex10.5$Students

## z = -2.7559, p-value = 0.005853

## alternative hypothesis: true tau is not equal to 0

## sample estimates:

## tau

## -0.615457

The correlation coefficient (sample estimate) is τ = −0.6155. It appears that there is a
moderately strong negative correlation between month after cut-off date and referrals for
gifted evaluation. The P value of 0.0059 means that H0 should be rejected.

Why does the warning appear in the output? Look back at the original data and notice
the ties. The pairs of months February and May and August and November had the same
number of students. The presence of ties makes it impossible to compute an exact P value.
If you know in advance that there will be ties in the data, this warning can be avoided by
using the additional argument: exact = FALSE, so that the full command could have been

> cor.test(data.Ex10.5$AfterCutOff, data.Ex10.5$Students, method = "kendall",

+ exact = FALSE, conf.level = 0.95)

Spearman’s Coefficient rs

Another common measure of correlation is Spearman’s rank correlation coeffi-
cient rs.

EXAMPLE 10.8. A study by Musch and Hay examined relative age effects in soccer in various
northern and southern hemisphere countries. For each country, a sample consisting of all
players in the highest professional soccer league was investigated. Their data for Germany
are given below. A cut-off date of August 1 applies in Germany. Since participation cut-off
dates vary by country, foreign players were excluded from their analysis. For each country,
the distribution of professional players’ birthdays was computed by month. These birthday
distributions were then compared with that of the general population of that country.
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The first column is the month after the cut-off date in which the player was born. The
second column is the number of professional soccer players born in the respective months
of the competition year. The third column is the number of soccer players that would be
expected on the basis of official birth statistics assuming that the birth distribution of soccer
professionals is the same as that of the general population, and that no relative age effect
exists. The fourth column is the difference between this expected and the observed number
of players.

Month Actual players Expected players Difference

1 37 28.27 8.73

2 33 27.38 5.62

3 40 26.26 13.74

4 25 27.60 −2.60

5 29 29.16 −0.16

6 33 30.05 2.95

7 28 31.38 −3.38

8 25 31.83 −6.83

9 25 31.16 −6.16

10 23 30.71 −7.71

11 30 30.93 −0.93

12 27 30.27 −3.27

The table shows that, in general, the older players in the 1-year cohorts tend to be over-
represented and younger players underrepresented in the total number of professional
soccer players in Germany. Compute and interpret rs for these data where X is the month
and Y is the difference between actual and expected numbers of professional players. (Based
on data reported by: Musch, J. and R. Hay. 1999. The relative age effect in soccer: Cross-
cultural evidence for a systematic discrimination against children born late in the competi-
tion year. Sociology of Sport Journal, 16: 54–64.)

SOLUTION. Start by reading the data and listing it.

> data.Ex10.8 <- read.table("http://waveland.com/Glover-Mitchell/Example10-8.txt",

+ header = TRUE)

> head(data.Ex10.8, n = 3)

## Month Actual Expected

## 1 1 37 28.27

## 2 2 33 27.38

## 3 3 40 26.26

To be able to carry out the test, first calculate the difference between the actual number
of players and the expected number of players for each month and put the result into a new
column of data.Ex10.8.

> data.Ex10.8["Difference"] <- data.Ex10.8$Actual - data.Ex10.8$Expected

> data.Ex10.8

## Month Actual Expected Difference

## 1 1 37 28.27 8.73

## 2 2 33 27.38 5.62

## 3 3 40 26.26 13.74

## 4 4 25 27.60 -2.60

## 5 5 29 29.16 -0.16

## 6 6 33 30.05 2.95

## 7 7 28 31.38 -3.38

## 8 8 25 31.83 -6.83

## 9 9 25 31.16 -6.16

## 10 10 23 30.71 -7.71

## 11 11 30 30.93 -0.93

## 12 12 27 30.27 -3.27
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To carry out the correlation analysis using Spearman’s method, use cor.test( ) and set
method = "spearman". In this example the data are contained in data.Ex10.8$Month and
data.Ex10.8$Difference. To determine the correlation coefficient and test the hypotheses
H0: ρs = 0 and Ha : ρs 6= 0 with α = 0.05 use

> cor.test(data.Ex10.8$Month, data.Ex10.8$Difference, method = "spearman",

+ conf.level = 0.95)

##

## Spearman's rank correlation rho

##

## data: data.Ex10.8$Month and data.Ex10.8$Difference

## S = 494, p-value = 0.01

## alternative hypothesis: true rho is not equal to 0

## sample estimates:

## rho

## -0.727273

The correlation coefficient (sample estimate) is rs = −0.7273. The P value for the test is
0.01, so reject H0 and accept Ha. The negative Spearman rank correlation (rs = −0.7273)
is significant and indicates that there is an excess in the number of “goliath” players (those
born early in the competition year) and a lack of players born late in the competition year
among professional soccer players in Germany.



11. Goodness of Fit Tests for Categorical Data

This final chapter introduces techniques to analyze categorical or count data.

The Binomial Test

The binomial test applies to data that can be classified into two mutually exclusive
categories. The test presumes that there are estimates for the proportions of the
population falling into each of the categories prior to conducting the test. The pur-
pose of the test is to obtain evidence that either supports or refutes the supposition
that these hypothesized proportions are the actual proportions. The binomial test
is carried out in R by using the binom.test( ) function.

binom.test(x, n, p = proportion, alternative = "two.sided", conf.level = 0.95)

Details: x is the number of successes; n specifies the number of trials; p =

proportion specifies the hypothesized probability of success, with default p
= 0.5; alternative indicates the alternative hypothesis where the default is
"two.sided" and the other options are "greater" and "less"; and conf.level

is the confidence level for the returned confidence interval. The default is 0.95,
which is equivalent to α = 0.05.

EXAMPLE 11.2. The severe drought of 1987 in the U.S. affected the growth rate of estab-
lished trees. It is thought that the majority of the trees in the affected areas each have a 1987

growth ring that is less than half the size of the tree’s other growth rings. A sample of 20

trees is collected and 15 have this characteristic. Do these data support the claim?

SOLUTION. Use the binomial test with α = 0.05, that is, with the default conf.level =

0.95. Let p denote the proportion of trees with a 1987 growth ring that is less than half their
usual size. The alternative hypothesis is that “the majority of the trees” have this property,
that is, Ha: p > 0.5. The null hypothesis is H0: p ≤ 0.5. The number of successes is x = 15,
the number of trials is n = 20, and the hypothesized probability of success is the default p
= 0.5. This is a right-tailed test, so alternative = "greater". There are no data to read for
the problem. To carry out the test use

> binom.test(x = 15, n = 20, p = 0.5, alternative = "greater", conf.level = 0.95)

or, taking advantage of the default settings, use

> binom.test(x = 15, n = 20, alternative = "greater")

##

## Exact binomial test

##

## data: 15 and 20

## number of successes = 15, number of trials = 20, p-value = 0.02069
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## alternative hypothesis: true probability of success is greater than 0.5

## 95 percent confidence interval:

## 0.544418 1.000000

## sample estimates:

## probability of success

## 0.75

Since the P value is less than α = 0.05, reject H0. There is evidence that the majority of
trees have growth rings for 1987 less than half their usual size. A 95 percent right-tailed
confidence interval for the proportion p of trees with a 1987 growth ring that is less than
half their usual size is [0.5444, 1.0000] and does not contain 0.5. We are 95 percent certain
that the true proportion is at least 0.5444.

EXAMPLE 11.3. Pardalotes are small (8–12 cm) birds that feed mostly in the outer canopy,
high in eucalyptus trees. However, they nest in holes dug in earth banks. (“Pardalote”
comes from the Greek word for “spotted.”) There are two different races of striated pardalote,
Pardalotus striatus, in southeastern Queensland. Suppose that historical records indicate
that race A comprised 70% of the population. A small census at Mt. Coot-tha locates 18

pardalotes: 11 of race A and 7 of race B. Do these figures indicate any difference from the
historical pattern?

SOLUTION. A two-sided binomial test with α = 0.05 is appropriate. The hypothesized
proportion of race A is p = 0.7. The null hypothesis is H0: p = 0.7 while the alternative is
Ha: p 6= 0.7. The test statistic or number of successes is x = 11 and the number of trials is n

= 18. To carry out the test use

> binom.test(x = 11, n = 18, p = 0.7)

##

## Exact binomial test

##

## data: 11 and 18

## number of successes = 11, number of trials = 18, p-value = 0.4429

## alternative hypothesis: true probability of success is not equal to 0.7

## 95 percent confidence interval:

## 0.357451 0.827014

## sample estimates:

## probability of success

## 0.611111

The P value is 0.4429, which is much greater than α = 0.05. There is not sufficient
evidence to support a claim of a change in the population proportions of the two races. The
95 percent confidence interval for the proportion of race A pardalotes is [0.357, 0.827] and so
contains the historical proportion of 0.7.

EXAMPLE 11.4. In 2011, according to the U.S. Census Bureau 30.4% of adults residing in
the United States had received at least a bachelor’s degree. A high-tech firm is considering
relocating its headquarters to a city where it is believed that there is a higher than average
proportion of college graduates. In a random sample of n = 480 individuals in this city,
169 claim to have a bachelor’s degree. Is there evidence that citizens of this city are more
highly-educated than the population as a whole?

SOLUTION. A right-tailed binomial test with α = 0.05 is appropriate with null and alterna-
tive hypotheses H0: p ≤ 0.304 and Ha: p > 0.304, respectively.

> binom.test(x = 169, n = 480, p = 0.304, alternative = "greater")

##

## Exact binomial test
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##

## data: 169 and 480

## number of successes = 169, number of trials = 480, p-value =

## 0.01331

## alternative hypothesis: true probability of success is greater than 0.304

## 95 percent confidence interval:

## 0.315934 1.000000

## sample estimates:

## probability of success

## 0.352083

The P value for the test is 0.013. Since this value is less than α = 0.05, reject H0. Equiv-
alently, a 95 percent confidence interval [0.316, 1.000] does not contain the hypothesized
proportion p = 0.304 of college graduates. There is evidence that citizens of this city are
more highly-educated than the U.S. population as a whole.

EXAMPLE 11.5. Assume that the hypotheses are the same as in Example 11.3, but that the
sample size is n = 180 birds: 110 of race A and 70 of race B. Would these figures indicate
any difference from the historical pattern?

SOLUTION. A two-sided binomial test with α = 0.05 is appropriate and the null and
alternative hypotheses remain the same as in Example 11.3. The test statistic or number of
successes is x = 110, the number of trials is n = 180. To carry out the test use

> binom.test(x = 110, n = 180, p = 0.7)

##

## Exact binomial test

##

## data: 110 and 180

## number of successes = 110, number of trials = 180, p-value =

## 0.01149

## alternative hypothesis: true probability of success is not equal to 0.7

## 95 percent confidence interval:

## 0.535762 0.682736

## sample estimates:

## probability of success

## 0.611111

The P value is 0.0115, which is smaller than α = 0.05. The 95 percent confidence interval
for the proportion of race A pardalotes is is [0.536, 0.683] and does not contain the historical
proportion of 0.7. Reject H0 this time. There is evidence that there has been a change in
the historical pattern. The benefit of a larger sample size can be seen in the much narrower
confidence interval for the proportion p of race A pardalotes. More work pays off.

Comparing Two Population Proportions

There are many situations where we may want to compare the proportions of two
groups that have some specified characteristic. The proportions test is carried out
in R by using the prop.test( ) function.

prop.test(x, n, alternative = "two.sided", conf.level = 0.95)

Details: x is a two-dimensional vector specifying the successes for each group;
n is a two-dimensional vector specifying the number of trials for each group;
alternative indicates the alternative hypothesis where the default is "two.sided"

and the other options are "greater" and "less"; and conf.level is the confi-
dence level for the returned confidence interval. The default is 0.95, which is
equivalent to α = 0.05.
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However, prop.test( ) uses a different method (chi-square) to compute a P
value than the method illustrated in the text (Z-statistic). So we have provided the
function z.prop.test( ) that uses the latter method. The two functions differ only
slightly in the the P value computed.

z.prop.test(x, n, alternative = "two.sided", conf.level = 0.95)

Details: The arguments are identical to those for prop.test( ).

EXAMPLE 11.6. A stent is a small wire mesh tube, often inserted in an artery, that acts as
a scaffold to provide support to keep the artery open. Stents are a common therapy used
to keep open totally occluded arteries in coronary patients. They may be implanted even
several days after a heart attack under the assumption that any procedure that increases
blood flow will lead to an improvement in survival rate.

A study was carried out to determine whether the time when stents are implanted in
patients’ arteries changes the effectiveness of the treatment. In the study 2166 stable patients
who had had heart attacks in the previous 3 to 28 days and had a total occlusion of an
artery related to this attack were randomly assigned to two groups. Group 1 consisted of
1082 patients who received stents and optimal medical therapy, while Group 2 consisted of
1084 patients who received medical therapy alone with no stents. The results were that 171

of the patients in Group 1 and 179 patients in Group 2 had died by the end of four years.
Researchers had expected to find a reduction in death rate for patients receiving stents

under the conditions described. Was there any evidence for this?

SOLUTION. A left-tailed, two-sample proportions test at the α = 0.05 level is appropriate.
The hypotheses are H0: p1 ≥ p2 and Ha: p1 < p2. Create the vectors holding the number of
successes and the number of trials.

> x <- c(171, 179) # successes (deaths) for Group 1 and Group 2

> n <- c(1082, 1084) # trials for Group 1 and Group 2

> source("http://waveland.com/Glover-Mitchell/z.prop.txt") # Download source file

## Downloaded: z.prop.test( ).

> z.prop.test(x, n, alternative = "less")

##

## 2-sample Z-test for equality of proportions

##

## data: x out of n

## z-statistic = -0.4481, p-value = 0.327

## alternative hypothesis: less

## 95 percent confidence interval:

## -1.0000000 0.0189272

## sample estimates:

## prop 1 prop 2

## 0.158041 0.165129

The resulting P value is 0.327 and is much larger than α = 0.05. Do not reject H0; there
is no evidence for a significant reduction in death rate with the implantation of stents in
patients 3 to 28 days after heart attack.

For completeness, here’s the analysis using prop.test. The results are quite similar.

> prop.test(x, n, alternative = "less")

##

## 2-sample test for equality of proportions with continuity

## correction

##
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## data: x out of n

## X-squared = 0.1519, df = 1, p-value = 0.3484

## alternative hypothesis: less

## 95 percent confidence interval:

## -1.0000000 0.0198505

## sample estimates:

## prop 1 prop 2

## 0.158041 0.165129

EXAMPLE 11.7. Find a 95% confidence interval for the difference in death rates in Exam-
ple 11.6.

SOLUTION. To find a two-sided 95% confidence interval for the difference in death rates,
use z.prop.test( ) with the defaults alternative = "two.sided" and conf.level = 0.95

and with x and n as in Example 11.6.

> z.prop.test(x, n)

##

## 2-sample Z-test for equality of proportions

##

## data: x out of n

## z-statistic = -0.4481, p-value = 0.654

## alternative hypothesis: two.sided

## 95 percent confidence interval:

## -0.0380880 0.0239111

## sample estimates:

## prop 1 prop 2

## 0.158041 0.165129

The confidence interval is [−0.038, 0.024]. Since the confidence interval contains 0, there
is no significant difference in the two death rates.

The Chi-Square Test for Goodness of Fit

The first chi-square test that we consider is a test of differences between distribu-
tions. Its purpose is to compare the observed (empirical) frequencies of a discrete,
ordinal, or categorical data set with those of some theoretically expected discrete
distribution such as the binomial or Poisson. The hypothesis test takes only one
form:

• H0: The observed frequency distribution is the same as the hypothesized fre-
quency distribution.

• Ha: The observed and hypothesized frequency distributions are different.

The test is carried out with the function

chisq.test(x = observed, p = expected)

Details: x = observed is the vector containing the observed counts of each cat-
egory; p = expected is the vector specifying the expected proportions for each
category. (One can use the expected values instead of the proportions.) The
counts and corresponding expected proportions (values) must be listed in the
same order. There are additional arguments that may be used with this function
that will be detailed later.
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The Extrinsic Model

The first example we consider is an extrinsic model. In an extrinsic model all pop-
ulation parameters required for the analysis are assumed before the data are col-
lected. No parameters (e.g., the mean or variance) need to be estimated from the
data.

EXAMPLE 11.8. Four-o’clocks, Mirabilis jalapa, are plants native to tropical America. Their
name comes from the fact that their flowers tend to open in the late afternoon. Individ-
ual four-o’clock plants can have red, white, or pink flowers. Flower color in this species is
thought to be controlled by a single gene locus with two alleles expressing incomplete dom-
inance, so that heterozygotes are pink-flowered, while homozygotes for one allele are white-
flowered and homozygotes for the other allele are red-flowered. According to Mendelian
genetic principles, self-pollination of pink-flowered plants should produce progeny that
have red, pink, and white flowers in a 1:2:1 ratio. A horticulturalist self-pollinates several
pink-flowered plants and produces 240 progeny with 55 that are red-flowered, 132 that are
pink-flowered, and 53 that are white-flowered. Are these data reasonably consistent with
the Mendelian model of a single gene locus with incomplete dominance?

SOLUTION. The hypotheses are

• H0: The data are consistent with a Mendelian model (red, pink, and white flowers
occur in the ratio 1:2:1).

• Ha: The data are inconsistent with a Mendelian model.

The three colors are the categories. In order to calculate expected frequencies, no parameters
need to be estimated because the Mendelian ratios (25% red, 50% pink, and 25% white)
were established prior to the data collection, making this an extrinsic test. To carry out the
test, first create the vector observed holding the observed counts for the different colors and
then create the vector expected. Notice below that fractions were used instead of decimal
proportions. In general using fractions is more accurate than using decimals that may need
to be rounded off, though in this case using expected <- c(0.25, 0.5, 0.25) would have
produced the same result.

> observed <- c(55, 132, 53)

> expected <- c(1/4, 2/4, 1/4)

> chisq.test(x = observed, p = expected)

##

## Chi-squared test for given probabilities

##

## data: observed

## X-squared = 2.4333, df = 2, p-value = 0.2962

The resulting P value is 0.2962 and is greater than α = 0.05. H0 is accepted. There is
support for the Mendelian genetic model.

The Intrinsic Model

The next example we consider is an intrinsic model. The intrinsic model requires
an estimation of some population parameter(s) from the data collected.

EXAMPLE 11.9. The Poisson distribution is useful for describing rare, random events such
as severe storms. To review the characteristics of the Poisson distribution see Chapter 3.
In the 98-year period from 1900 to 1997, there were 159 U.S. landfalling hurricanes. Does
the number of landfalling hurricanes/year (see the table below) follow a Poisson distribu-
tion? (Based on data reported in: Bove, M. et al. 1998. Effect of El Niño on U.S. landfalling
hurricanes, revisited. Bulletin of the American Meteorological Society, 79: 2477–2482.)
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Hurricanes/year 0 1 2 3 4 5 6

Frequency 18 34 24 16 3 1 2

SOLUTION. The hypotheses are

• H0: The annual number of U.S. landfalling hurricanes follows a Poisson distribu-
tion.

• Ha: The annual number of U.S. landfalling hurricanes is inconsistent with a Pois-
son distribution.

To carry out an intrinsic chi-square test requires several preliminary calculations. To use the
Poisson density formula we need to specify the mean number of hurricanes/year. In this
example, this parameter must be estimated from the data, and this is what makes this an
intrinsic model. From the information given, the estimate for the mean µ is

> mu.est <- round(159/98, digits = 3)

> mu.est

## [1] 1.622

As in Chapter 3, use the Poisson probability density function dpois(x, mu) to determine
the probability of x hurricanes per year. For example, to determine the probability of 2
hurricanes per year, use

> dpois(2, mu.est)

## [1] 0.259804

To calculate the probabilities for 0 through 5 hurricanes/year, use the vector c(0:5) as x

in dpois( ).

> dpois(c(0:5), mu.est)

## [1] 0.1975033 0.3203503 0.2598041 0.1404674 0.0569595 0.0184777

The last “observed” category in the given data is 6 hurricanes/year. However, theoreti-
cally there is a small probability that more than 6 hurricanes might be observed in a year, so
we use “6 or more hurricanes/year” as the last category.

P(x ≥ 6 hurricanes/year) = 1− P(x < 6 hurricanes/year) = 1− P(x ≤ 5 hurricanes/year)

In R use

> ppois(5, mu.est, lower.tail = FALSE) # P(x >= 6)

## [1] 0.00643757

Put all of these probabilities into a single variable called expected.proportions by using
the c( ) operation.

> expected.proportions <- c(dpois(c(0:5), mu.est), ppois(5, mu.est, lower.tail = FALSE))

> expected.proportions

## [1] 0.19750330 0.32035035 0.25980413 0.14046743 0.05695954 0.01847768

## [7] 0.00643757

The χ2 test requires that all expected values be at least 5. To determine the expected
values, multiply the expected.proportions for x hurricanes/year by the number of years,
98.
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> expected.values <- 98*expected.proportions

> expected.values

## [1] 19.355323 31.394334 25.460805 13.765809 5.582035 1.810812 0.630882

The expected frequency of observing 0 hurricanes/year is 19.35, 1 hurricane/year is
31.39, and so on, up to 6 or more hurricanes/year, which is 0.63. The expected frequencies
for 5 and for 6 or more hurricanes/year are both less than 5 so do not satisfy the assump-
tions of the test. To get around this difficulty, adjacent categories should be combined until
the expected number is at least 5. In this case, it requires collapsing the last three categories
into a single category “≥ 4,” or, in terms of R, ppois(3, mu.est, lower.tail = FALSE).

> # the probabilities of 0 to 3 hurricanes and 4 or more hurricanes combined

> expected <- c(dpois(c(0:3), mu.est), ppois(3, mu.est, lower.tail = FALSE))

> expected

## [1] 0.1975033 0.3203503 0.2598041 0.1404674 0.0818748

Now we are ready to carry out an intrinsic chi-square test. R does not have a built in
function to do this, but we have created the intrinsic.chisq.test( ) to fill this lacuna.

intrinsic.chisq.test(x = observed, p = expected, est.params)

Details: As with chisq.test( ), x = observed is a vector containing the observed counts
of each category and p = expected is a vector specifying the expected proportions for
each category. The counts and the corresponding expected proportions must be listed
in the same order. Finally est.params is the number of parameters that were estimated
from the data to determine the expected proportions. This must be a non-negative in-
teger and the default value is est.params = 1. This is used to determine the degrees of
freedom in the analysis.

In this example one parameter, µ, was estimated from the data, so est.params = 1. From
the original data, the observed number of years with no hurricanes was 18, with 1 hurricane
was 34, with 2 hurricanes was 24, with 3 hurricanes was 16, and with 4 or more hurricanes
was 6. Put these values in a variable called observed.

> observed <- c(18, 34, 24, 16, 6)

The corresponding probabilities were stored in expected. So after we download the
required function the entire analysis is carried out with a single command.

> source("http://waveland.com/Glover-Mitchell/intrinsic.chisq.txt")

## Downloaded: intrinsic.chisq.test( ).

> intrinsic.chisq.test(x = observed, p = expected, est.params = 1)

##

## Chi-squared test for given probabilities

##

## data: x = observed and p = expected

## X-squared = 1.268, df = 3, p-value = 0.7367

The P value is 0.7367, which is much greater than α = 0.05. We cannot reject the claim
that the annual number of U.S. landfalling hurricanes is described by a Poisson process with
µ = 159/98 ≈ 1.622. Accept H0.

The Chi-Square Test for r× k Contingency Tables

We now examine a second type of chi-square test that is used to test whether the
distribution of a categorical variable is the same in two or more populations.
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Contingency Tables

We are interested in how categorical variables are distributed among two or more
populations. Let r be the number of categories and k the number of populations or
treatments. We can form a table or matrix with r rows, one for each category, and k
columns, one for each population. The entry Oij in row i and column j represents
the number of observations of category i in population j. Such an arrangement of
data is called an r × k contingency table. The question at hand is whether there
is a relationship or dependency between the row and column variables. In this
context we use the chisq.test( ) but with different arguments.

chisq.test(x, correct = TRUE)

Details: x is the contingency table containing the observed counts of each cat-
egory and the default correct = TRUE specifies that a continuity correction is
used when calculating the P value for a 2× 2 contingency table.

EXAMPLE 11.10. In a study of hermit crab behavior at Point Lookout, North Stradbroke Is-
land, a random sample of three types of gastropod shells was collected. Each shell was then
scored as being either occupied by a hermit crab or empty. Shells with living gastropods
were not sampled. Do hermit crabs prefer a certain shell type? Or do hermit crabs occupy
shells in the same proportions as they occur as empty shells? In other words, is the shell
species independent of whether it is occupied?

Species Occupied Empty Total

Austrocochlea 47 42 89

Bembicium 10 41 51

Cirithiidae 125 49 174

Total 182 132 314

SOLUTION. The hypotheses are

• H0: The status (occupied or not) is independent of the shell species.

• Ha: The status is not independent of the shell species.

The most complicated aspect of the analysis is entering the data. The data must be put
into a table (or matrix) before it can be analyzed. Enter the data, excluding the totals, row by
row (or column by column, see comments below). Then bind the rows together using the
rbind( ) command (or bind the columns with cbind( )) to form the data table. Finally, add
the column names (or row names).

> Austrocochlea <- c(47, 42) # or Occupied <- c(47, 10, 42)

> Bembicium <- c(10, 41) # and Empty <- c(42, 41, 49)

> Cirithiidae <- c(125, 49)

> Example11.10.table <- rbind(Austrocochlea, Bembicium, Cirithiidae)

> # or Example11.10.table <- cbind(Occupied, Empty)

> colnames(Example11.10.table) <- c("Occupied", "Empty")

> # rownames(Example11.10.table) <- c("Austrocochlea", "Bembicium", "Cirithiidae")

> Example11.10.table

## Occupied Empty

## Austrocochlea 47 42

## Bembicium 10 41

## Cirithiidae 125 49

The analysis is now carried out using
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> chisq.test(Example11.10.table)

##

## Pearson's Chi-squared test

##

## data: Example11.10.table

## X-squared = 45.5116, df = 2, p-value = 1.31e-10

The tiny P value indicates that H0 should be rejected. There is reason to believe that
shell species and occupancy are not independent. That is, hermit crabs are “selective” in the
species of shell that they occupy.

A couple of other features of R are useful to mention at this point. To add the marginal
totals to Example11.10.table use

> addmargins(Example11.10.table)

## Occupied Empty Sum

## Austrocochlea 47 42 89

## Bembicium 10 41 51

## Cirithiidae 125 49 174

## Sum 182 132 314

To see the expected values used in the test, use

> chisq.test(Example11.10.table)$expected

## Occupied Empty

## Austrocochlea 51.5860 37.4140

## Bembicium 29.5605 21.4395

## Cirithiidae 100.8535 73.1465

EXAMPLE 11.11. A study was conducted in the reef flat of Lady Elliot Island to examine the
distribution of the animals associated with different species of coral. Three species of coral
were selected and appropriate coral heads were sampled. The number of snails of species
A and B associated with each were recorded. Is the distribution of snail species the same
for all three coral species? Use the data below to test the hypothesis at the α = 0.05 level.
Clearly state the hypotheses and interpret the results.

Coral

Pocillopora eydouxi Acropora sp. Acropora aspera Total

Species A 6 2 14 22

Species B 7 21 1 29

Total 13 23 15 51

SOLUTION. The hypotheses are

• H0: The distribution of snail species A and B is the same in all three types of coral
heads.

• Ha: The distribution of snail species A and B is not the same in all three types of
coral heads.

As in the previous example, form the data table a row at a time and carry out the test.

> SpeciesA <- c(6, 2, 14)

> SpeciesB <- c(7, 21, 1)

> Example11.11.table <- rbind(SpeciesA, SpeciesB)

> colnames(Example11.11.table) <- c("Pocillopora eydouxi", "Acropora sp",
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+ "Acropora aspera")

> Example11.11.table

## Pocillopora eydouxi Acropora sp Acropora aspera

## SpeciesA 6 2 14

## SpeciesB 7 21 1

> chisq.test(Example11.11.table)$expected # check all expected values >= 5

## Pocillopora eydouxi Acropora sp Acropora aspera

## SpeciesA 5.60784 9.92157 6.47059

## SpeciesB 7.39216 13.07843 8.52941

> chisq.test(Example11.11.table)

##

## Pearson's Chi-squared test

##

## data: Example11.11.table

## X-squared = 26.5792, df = 2, p-value = 1.692e-06

The small P value indicates that null hypothesis should be rejected. Based on these data,
the distribution of snail species A and B varies with coral species.

Finally, observe that the expected values were also printed. It is worth recalling the rule
of thumb that each expected frequency should be at least 5. Note that Example 11.11 satisfies
this criterion even though some of the observed frequencies fall below 5. The chisq.test( )

will provide a warning whenever an expected value is smaller than 5.

2 × 2 Contingency Tables

A special case of the r× k contingency table is the 2× 2 table. Because of the small
number of cells (4), a correction factor is usually employed.

EXAMPLE 11.12. A study of kidney damage during organ retrieval for transplantation was
conducted in the United Kingdom using data from the UK National Transplant Database for
the 1992 to 1996 period. In many cases of organ donation, when the kidneys are retrieved
the liver is retrieved as well in a single surgical procedure. When both types of organs were
retrieved, the researchers categorized the surgical team, based on the operating surgeon’s
specialty, as either a renal retrieval team or a liver retrieval team. Their data are given below.
Was the rate of reported damage to kidneys independent of the type of surgical team?
Analyze the data with a 2× 2 contingency table. Note: 94% of damaged organs were still
transplanted. (Based on data from: Wigmore, S. et al. 1999. Kidney damage during organ
retrieval: Data from the UK National Transplant Database. The Lancet, 354: 1143–1146.)

Team Damaged kidneys Undamaged kidneys Total

Renal retrieval 454 1692 2146

Liver retrieval 415 2054 2469

Total 869 3746 4615

SOLUTION. The hypotheses are

• H0: Surgical team and condition of kidneys are independent.

• Ha: An association between type of surgical team and condition of kidneys exists
(one team experiences more success than the other in these circumstances).

As in the previous two examples, create the data table and carry out the test. Here we
illustrate constructing the table column by column.
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> Damaged <- c(454, 415)

> Undamaged <- c(1692, 2054)

> Example11.12.table <- cbind(Damaged, Undamaged) # use cbind( ) for columns

> rownames(Example11.12.table) <- c("Renal retrieval", "Liver retrieval")

> addmargins(Example11.12.table) # optional: print the margin totals

## Damaged Undamaged Sum

## Renal retrieval 454 1692 2146

## Liver retrieval 415 2054 2469

## Sum 869 3746 4615

> chisq.test(Example11.12.table)$expected # check all expected values >= 5

## Damaged Undamaged

## Renal retrieval 404.09 1741.91

## Liver retrieval 464.91 2004.09

> chisq.test(Example11.12.table)

##

## Pearson's Chi-squared test with Yates' continuity correction

##

## data: Example11.12.table

## X-squared = 13.9127, df = 1, p-value = 0.0001915

Note: With 2 × 2 contingency tables, a continuity correction is automatically applied.
The P value associated with a test statistic of 13.91 is less than 0.0002; reject H0. The kidney
damage rate for renal surgical teams (21.2%) is significantly higher than the kidney damage
rate for liver surgical teams (16.8%), a rather unexpected result.

Partitioning the Chi-Square Test

The final example in this section demonstrates the use of various chi-square analy-
ses to pinpoint discrepancies from expectation.

EXAMPLE 11.13. A genetics student wished to repeat one of Gregor Mendel’s classic ex-
periments with garden peas, Pisum sativum. She decided to study two characteristics: stem
length and seed pod color. From her research she knows that a single gene locus with two
alleles controls stem length. AA or Aa produces tall plants (about 1 m) while aa produces
short plants (approximately 0.5 m). Also a single locus with two alleles controls seed pod
color with BB and Bb producing green seed pods and bb producing yellow seed pods. In
other words, both loci exhibit complete dominance. From Mendel’s published work these
two gene loci are assumed to be independently assorting. The student crosses together
plants that are tall with green seed pods and are known to be heterozygous at both loci:

tall, green pods (AaBb) × tall, green pods (AaBb)

↓
Experimentally produced offspring:

178 tall, green pods (A−B−)
30 tall, yellow pods (A−bb)
62 short, green pods (aaB−)
10 short, yellow pods (aabb)

If these genes behave according to Mendel’s laws, she expects the offspring to be in a
9:3:3:1 ratio. Test this hypothesis.

SOLUTION. The hypotheses are

• H0: The results are in a 9:3:3:1 phenotypic ratio.
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• Ha: The results deviate significantly from a 9:3:3:1 ratio.

This requires an extrinsic chi-square test; the expected proportions, namely 9
16 , 3

16 , 3
16 , and

1
16 , do not require any parameters estimated from the data.

> observed <- c(178, 30, 62, 10)

> expected <- c(9/16, 3/16, 3/16, 1/16)

> chisq.test(x = observed, p = expected)

##

## Chi-squared test for given probabilities

##

## data: observed

## X-squared = 17.2444, df = 3, p-value = 0.0006295

Since χ2 = 17.24 has a P value less than 0.001, reject H0. The data deviate significantly
from a 9:3:3:1 ratio.

The student would like to know exactly why the data set failed to meet the expectation
that she had so carefully researched. Thinking about this situation, she realized that the
9:3:3:1 ratio was predicated on three assumptions.

1. The gene locus for plant height produced offspring in a 3 A−:1 aa ratio.

2. The gene locus for seed pod color produced offspring in a 3 B−:1 bb ratio.

3. The 2 gene loci, A and B, are independent of each other.

Test each of these assumptions separately and independently by the following methods:

1. First test

• H0: Offspring have a 3 tall :1 short ratio.

• Ha: Offspring deviate significantly from the expected ratio of 3 tall:1 short.

This requires another extrinsic chi-square test. A 3:1 ratio uses proportions 3
4 and 1

4 .

> observedTs <- c(208, 72) # Ts = Tall short

> expectedTs <- c(3/4, 1/4)

> chisq.test(x = observedTs, p = expectedTs)

##

## Chi-squared test for given probabilities

##

## data: observedTs

## X-squared = 0.0762, df = 1, p-value = 0.7825

Because the P value of the test is much larger than α, (0.7825 � 0.05) H0 is accepted.
Plant heights in offspring are in a 3:1 ratio.

2. Next test

• H0: Offspring have a 3 green seed pod:1 yellow seed pod ratio.

• Ha: Offspring deviate significantly from the expected ratio of 3 green:1 yellow.

The set up is similar to the Tall-short analysis.

> observedGy <- c(240, 40) # Gy = Green yellow

> expectedGy <- c(3/4, 1/4)

> chisq.test(x = observedGy, p = expectedGy)

##

## Chi-squared test for given probabilities

##

## data: observedGy

## X-squared = 17.1429, df = 1, p-value = 0.00003467
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This time the P value of the test is much smaller than α = 0.05, so H0 is rejected. The
phenotypic ratio for the seed pod color is significantly different from 3:1.

3. Finally test

• H0: Gene locus A is independent of gene locus B.

• Ha: The loci are not independent.

We test this H0 with a 2× 2 contingency table:

> A_ <- c(178, 30)

> aa <- c(62, 10)

> Example11.13.table <- rbind(A_, aa)

> colnames(Example11.13.table) <- c("B_ ", "bb")

> addmargins(Example11.13.table) # print the margin totals, too

## B_ bb Sum

## A_ 178 30 208

## aa 62 10 72

## Sum 240 40 280

> chisq.test(Example11.13.table)$expected # check all expected values >= 5

## B_ bb

## A_ 178.2857 29.7143

## aa 61.7143 10.2857

> chisq.test(Example11.13.table)

##

## Pearson's Chi-squared test with Yates' continuity correction

##

## data: Example11.13.table

## X-squared = 0, df = 1, p-value = 1

The calculated value of χ2 is nearly 0 and the corresponding P value is effectively 1.
Accept H0 that the two loci are behaving independently.

Looking at the three single degree of freedom chi-square analyses, one can see that the
discrepancy in the overall χ2 testing 9:3:3:1 is due to a distortion in the green to yellow seed
pod ratio. Notice the distorted ratio for the B locus has no effect on the 2× 2 contingency
test. Also the single degree of freedom chi-squares are a decomposition of the overall chi-
square and sum to that chi-square value with some small rounding differences. The analysis
done here is analogous to the partitioning of the sums of squares in analysis of variance.
This type of decomposition can be used on chi-square analyses as long as each test is inde-
pendent of the other tests involved in the decomposition.

The Kolmogorov-Smirnov Test

As with the previous goodness of fit tests, the purpose of this test is to determine
whether a random sample from some unknown distribution is, in fact, actually
from some specified distribution. While the χ2 test is specifically designed for
use with discrete or categorical data, the Kolmogorov-Smirnov test is used to test
whether a random sample comes from a population with a particular continu-
ous distribution. The Kolmogorov-Smirnov test is carried out in R by using the
ks.test( ) function.

ks.test(x, y, ..., alternative = "two.sided")

Details: x is a numeric vector of data values; y specifies the distribution in ques-
tion and the . . . indicate any parameters required to specify the distribution
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(e.g., mean and standard deviation); alternative indicates the alternative hy-
pothesis where the default is "two.sided" and the other options are "greater"

and "less".

EXAMPLE 11.14. The heights of 18- to 22-year-old females in the U.S. are normally dis-
tributed with µ = 163 cm and σ = 8 cm. As part of a data analysis exercise on the
Kolmogorov-Smirnov test, 10 female students were selected at random in one of our statis-
tics classes and their heights measured. Do the data below follow the same distribution as
the national data or are the heights of women at our college distributed differently?

149 157 159 160 160 163 168 170 178 185

SOLUTION. The hypotheses are:

• H0: S(x) = F(x) for all x. The empirical (actual) cumulative distribution S(x) and
hypothesized cumulative distribution F(x) are identical.

• Ha: S(x) 6= F(x) for at least one value of x. The actual and hypothesized cumulative
distributions differ significantly for at least one point.

To carry out the test create a vector containing the observed heights. The question is
whether this sample comes from a population in which heights are normally distributed
with a mean of 163 cm and a standard deviation of 8 cm. This distribution is specified in R
using pnorm, mean = 163, sd = 8. The data may be downloaded from http://waveland.

com/Glover-Mitchell/Example11-14.txt. Thus, to carry out the test use

> data.Ex11.14 <- read.table("http://waveland.com/Glover-Mitchell/Example11-14.txt",

+ header = TRUE)

> head(data.Ex11.14, n = 2) # list data, determine variable name

## Height

## 1 149

## 2 157

> ks.test(data.Ex11.14$Height, y = pnorm, mean = 163, sd = 8)

## Warning in ks.test(data.Ex11.14$Height, y = pnorm, mean = 163, sd = 8): ties

should not be present for the Kolmogorov-Smirnov test

##

## One-sample Kolmogorov-Smirnov test

##

## data: data.Ex11.14$Height

## D = 0.1696, p-value = 0.9359

## alternative hypothesis: two-sided

The presence of ties always generates a warning, since ties are not expected to occur in
continuous distributions. Perhaps the heights should have been measured to the nearest
millimeter. Note: If the data were not provided, you could easily create your own data set
and do the analysis as follows.

> Height <- c(149, 157, 159, 160, 160, 163, 168, 170, 178, 185)

> ks.test(Height, pnorm, mean = 163, sd = 8)

## Warning in ks.test(Height, pnorm, mean = 163, sd = 8): ties should not be

present for the Kolmogorov-Smirnov test

##

## One-sample Kolmogorov-Smirnov test

##

## data: Height

## D = 0.1696, p-value = 0.9359

## alternative hypothesis: two-sided

http://waveland.com/Glover-Mitchell/Example11-14.txt
http://waveland.com/Glover-Mitchell/Example11-14.txt


126 glover & mitchell

The very large P value indicates that H0 is cannot be rejected. In further analysis it
would be appropriate to assume that female student heights in our class are from a nor-
mally distributed population with a mean of 163 cm and a standard deviation of 8 cm.

Here’s a function we’ve supplied that illustrates what the Kolmogorov-Smirnov test is
measuring.

ks.plot(x, xlab = "x-label", y, ...)

Details: x is a numeric vector of data values; xlab = "x-label" specifies the label for the
x-axis that describes the data; and y specifies the distribution in question and the ...

indicate any parameters required to specify the distribution (e.g., mean and standard
deviation).

To download this function use the source( ) command as follows.

> source("http://waveland.com/Glover-Mitchell/ks-lillie.plot.txt") # download source file

## Downloaded: ks.plot( )and lillie.plot( ).

> ks.plot(data.Ex11.14$Height, xlab = "Heights (cm)", y = pnorm, mean = 163, sd = 8)
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The step function in the plot shows the empirical cumulative distribution (the data). The
central red S-curve is the hypothesized distribution: the cumulative normal distribution
with µ = 163 and s = 8. The Kolmogorov-Smirnov test statistic is the maximum vertical
distance between the two curves. The smaller this distance, the closer the curves are and the
more likely that the sample comes from a normal distribution with the specified mean and
standard deviation. The two blue boundary S-curves form the 0.95 confidence band about
about the hypothesized distribution. Only if the empirical cumulative distribution (the step
function) remains within this band is the null hypothesis retained: The empirical (actual)
cumulative distribution S(x) and hypothesized cumulative distribution F(x) are identical.

EXAMPLE 11.15. We have suggested that a binomial distribution in which np > 5 and n(1−
p) > 5 is well approximated by a normal distribution with µ = np and σ2 = np(1− p). We
used R to simulate 20 independent experiments each using a binomial random variable with
n = 1000 trials and p = 0.5. The successes in each of the trials are listed below.

480 492 505 483 513 485 474 524 505 509

484 514 498 493 507 494 487 508 499 501

Does a Kolmogorov-Smirnov test indicate that these data could reasonably have come
from the normal distribution F(x) with µ = np = 1000(0.5) = 500 and σ2 = np(1− p) =

1000(0.5)(0.5) = 250?
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SOLUTION. Notice that even though the sample comes from a discrete binomial distribu-
tion, we are asking whether we may act as if the sample were drawn from a continuous
normal distribution. Thus, a Kolmogorov-Smirnov test is appropriate. The hypotheses are
H0: S(x) = F(x) for all x and Ha: S(x) 6= F(x) for at least one value of x. We will carry
out the test with α = 0.05. The question is whether this sample comes from a population
in which heights are normally distributed with a mean of 500 and a standard deviation of√

250. The data may be found at http://waveland.com/Glover-Mitchell/Example11-15.
txt.

> data.Ex11.15 <- read.table("http://waveland.com/Glover-Mitchell/Example11-15.txt",

+ header = TRUE)

> head(data.Ex11.15, n = 3) # list data, determine variable name

## Successes

## 1 480

## 2 492

## 3 506

> ks.test(data.Ex11.15$Successes, y = pnorm, mean = 500, sd = sqrt(250))

##

## One-sample Kolmogorov-Smirnov test

##

## data: data.Ex11.15$Successes

## D = 0.138, p-value = 0.7924

## alternative hypothesis: two-sided

The P value is 0.79 which exceeds α = 0.05. Consequently accept H0. We conclude that
we can reasonably act as if the data came from a normal distribution with µ = 500 and
σ2 = 250, as was suggested.

EXAMPLE 11.16. The cerulean warbler, Setophaga cerulea, is a small songbird most often
seen in forest treetops. It nests and forages higher in the canopy than most other warblers.
Their breeding habitat is confined to the eastern North American deciduous forests. It
winters in the boreal forests of South America. It is under consideration for listing under
the Endangered Species Act. As part of a study of the warbler’s breeding behavior, the nest
heights of 20 pairs of cerulean warblers were measured (in feet). Could this sample of nest
heights have been drawn from a uniformly distributed population with a range of 10 to
60 feet?

14.8 17.1 24.9 26.2 26.2 29.2 39.4 42.7 45.9 55.8

SOLUTION. In the uniform distribution on [10, 60], every number is equally likely to occur.
Thus, it is completely specified by the minimum and maximum values of the range, namely,
10 and 60. In R this is specified as: punif, min = 10, max = 60. The data can be read from
http://waveland.com/Glover-Mitchell/Example11-16.txt.

> data.Ex11.16 <- read.table("http://waveland.com/Glover-Mitchell/Example11-16.txt",

+ header = TRUE)

> head(data.Ex11.16, n = 2) # list data, determine variable name

## NestHt

## 1 14.8

## 2 17.1

> ks.test(data.Ex11.16$NestHt, y = punif, min = 10, max = 60)

## Warning in ks.test(data.Ex11.16$NestHt, y = punif, min = 10, max = 60): ties

should not be present for the Kolmogorov-Smirnov test

http://waveland.com/Glover-Mitchell/Example11-15.txt
http://waveland.com/Glover-Mitchell/Example11-15.txt
http://waveland.com/Glover-Mitchell/Example11-16.txt
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##

## One-sample Kolmogorov-Smirnov test

##

## data: data.Ex11.16$NestHt

## D = 0.216, p-value = 0.7392

## alternative hypothesis: two-sided

The P value is 0.7392 and is greater than α = 0.05; accept H0. We may assume that
the nest heights are uniformly distributed on the interval [10, 60]. Here’s the plot of the
what the test measures. The uniform distribution is the red line. Note that the empirical
cumulative distribution (black step function) stays within the 0.95 confidence band about
the hypothesized distribution.

> ks.plot(data.Ex11.16$NestHt, xlab = "Nest Heights (ft)", y = punif, min = 10, max = 60)
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PROBLEM 11.0 (Additional Exercise). Many states now have state lotteries. Typical of these
games is the New Jersey Pick-4 lottery. Participants may choose any of the ten-thousand
four-digit numbers from 0000 to 9999. Winning numbers are chosen twice a day, at midday
and in the evening. Assuming that the lottery is fair, each number has an equal probability
p = 0.0001 of being selected. This means that the cumulative distribution of winning
numbers should be approximately the continuous uniform distribution. The data in http:

//waveland.com/Glover-Mitchell/Problem11-NJLottery.txt are the 365 winning numbers
from from midday on January 1 to midday on July 1, 2004.

(a) Why did we say “the cumulative distribution of winning numbers should be approxi-
mately the continuous uniform distribution.”

(b) Carefully state the null and alternative hypotheses for a Kolmogorov-Smirnov test to
determine whether the lottery is fair.

(c) What is the outcome of the test?

(d) Create a graphical plot of the test.

SOLUTION. We said “approximate” because the true distribution of the winning numbers is
actually discrete. The winning numbers can only be integers. But because there are so many
categories (10000 possible numbers) the distribution is effectively continuous.

The hypotheses are:

• H0: The distribution of winning numbers is uniform.

• Ha: The distribution of winning numbers is not uniform.

http://waveland.com/Glover-Mitchell/Problem11-NJLottery.txt
http://waveland.com/Glover-Mitchell/Problem11-NJLottery.txt
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Read the data to determine the structure of the file and see whether all data are present.

> data.Prob.NJ <- read.table("http://waveland.com/Glover-Mitchell/Problem11-NJLottery.txt",

+ header = TRUE)

> head(data.Prob.NJ) # list data, determine variable name

## Pick4

## 1 3917

## 2 7350

## 3 6224

## 4 2904

## 5 3276

## 6 2735

> tail(data.Prob.NJ)

## Pick4

## 360 3514

## 361 5455

## 362 7771

## 363 435

## 364 9582

## 365 790

> ks.test(data.Prob.NJ$Pick4, y = punif, min = 0, max = 9999)

## Warning in ks.test(data.Prob.NJ$Pick4, y = punif, min = 0, max = 9999): ties

should not be present for the Kolmogorov-Smirnov test

##

## One-sample Kolmogorov-Smirnov test

##

## data: data.Prob.NJ$Pick4

## D = 0.0564, p-value = 0.1962

## alternative hypothesis: two-sided

> ks.plot(data.Prob.NJ$Pick4, xlab = "Winning Numbers", y = punif, min = 0, max = 9999)
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Notice how as the sample size has increased, the cv-corridor has narrowed compared to
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the previous example (the vertical scales in both diagrams are the same). The empirical dis-
tribution remains within the corridor and the P value of the test is 0.1962, which is greater
than α = 0.05. We cannot reject the null hypothesis.

The Lilliefors Test

We finish our discussion of goodness of fit tests with a description of the Lilliefors
test, which can be viewed as a variant of the Kolmogorov-Smirnov test. Its pur-
pose is to determine whether a sample could have come from a population with
a normal distribution without having specified the mean and variance in advance. This
distinguishes it from the Kolmogorov-Smirnov test.

lillie.test(x)

Details: x is a numeric vector of data values; the test is two-sided.

EXAMPLE 11.17. In Problem 2 of Chapter 6 we listed data that were part of a benthic com-
munity survey of Lady Elliot Island. Sixteen sea stars, Linckia laevigata, were collected and
their longest arms were measured to the nearest tenth of a centimeter.

10.3 11.0 10.5 10.0 11.3 14.5 13.0 12.1
12.1 9.4 11.3 12.0 11.5 9.3 10.1 7.6

The problem said to assume normality for the arm lengths. Is this assumption war-
ranted?

SOLUTION. Let α = 0.05 be the significance level of the test. The data may be found at
http://waveland.com/Glover-Mitchell/Example11-17.txt. The hypotheses are:

• H0: The distribution of Linckia laevigata is normal.

• Ha: The distribution of Linckia laevigata is not normal.

> data.Ex11.17 <- read.table("http://waveland.com/Glover-Mitchell/Example11-17.txt",

+ header = TRUE)

> data.Ex11.17 # list data, determine variable name

## Length

## 1 10.3

## 2 11.0

## 3 10.5

## 4 10.0

## 5 11.3

## 6 14.5

## 7 13.0

## 8 12.1

## 9 12.1

## 10 9.4

## 11 11.3

## 12 12.0

## 13 11.5

## 14 9.3

## 15 10.1

## 16 7.6

> lillie.test(data.Ex11.17$Length)

## Error in eval(expr, envir, enclos): could not find function "lillie.test"

http://waveland.com/Glover-Mitchell/Example11-17.txt
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What happened? Typically the Lilliefors test is not included in the basic packages that
are automatically installed in R. You must download the R package called nortest that
contains the code for lillie.test and other functions. Your instructor or TA can help you
do this. If you are working on a university network, you may not have permission to do
so, so your instructor may have to download it for you (or may already have done so). On
your personal computer, you can try using the command install.packages("nortest").
Depending on the operating system you are using, when in R you may have a menu item
called Packages & Data that can be used.

Once the nortest package is installed on your computer (or network), you must still load
the package for each R session with the command library(nortest), which will make the
package available to use. Let’s try it.

> library(nortest)

> lillie.test(data.Ex11.17$Length)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: data.Ex11.17$Length

## D = 0.1244, p-value = 0.7307

The P value is 0.7307 and is greater than α = 0.05; accept H0. Continue to assume the
arm lengths of Linckia laevigata are normally distributed.

We can illustrate what the Lilliefors test is measuring with

lillie.plot(x, xlab = "x-label")

Details: x is a numeric vector of data values and xlab = "x-label" specifies the label for
the x-axis that describes the data.

This function is downloaded with ks.plot. If you have not already downloaded it, use
the source( ) command as follows.

> source("http://waveland.com/Glover-Mitchell/ks-lillie.plot.txt") # download source file

## Downloaded: ks.plot( )and lillie.plot( ).

> lillie.plot(data.Ex11.17$Length, xlab = "Linckia arm lengths (cm)")
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The step function in the plot shows the empirical cumulative distribution. The central
red S-curve that is plotted is the hypothesized distribution, the cumulative normal distri-
bution with sample mean X and sample standard deviation s. The Lilliefors test statistic is
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the maximum vertical distance between the two curves. The smaller this number, the closer
the curves are and the more likely that the sample comes from a normal distribution with
the sample mean and standard deviation. The two blue boundary S-curves form the 0.95
confidence band about about the hypothesized distribution. Only if the empirical cumu-
lative distribution (the step function) remains within this corridor is the null hypothesis
retained: The empirical (actual) cumulative distribution S(x) and hypothesized cumulative
distribution F(x) are identical.

Two Additional Examples

EXAMPLE 11.18. The table below provides annual rainfall data (in mm) for 118 consecutive
years at Cowarie Station, South Australia from 1882 to 1999. (Cowarie is a 4,000 square
kilometer cattle station in north east South Australia.) The data have been rearranged in
increasing order and are located at http://waveland.com/Glover-Mitchell/Example11-18.
txt.

13 34 48 74 87 108 124 145 185 264

15 35 50 75 91 108 126 146 191 268

16 35 52 76 92 109 129 147 195 283

18 37 54 77 93 112 130 152 204 290

19 38 56 78 93 113 130 157 206 294

20 38 57 78 95 116 132 159 212 301

23 39 57 78 96 116 132 159 217 324

24 41 60 79 96 117 133 167 219 340

27 42 62 80 99 121 137 170 228 465

32 43 63 80 102 121 139 172 229 484

34 44 71 81 104 121 141 173 230

34 44 73 85 107 122 143 183 248

(a) Using an appropriate test, determine whether rainfall is normally distributed in this
part of Australia. Illustrate the result with an appropriate graph.

(b) Carryout a similar analysis for the annual rainfall data for Brisbane, Queensland
(on the east coast of Australia) mentioned in Chapter 0 of this guide and located at
http://waveland.com/Glover-Mitchell/Example00-2.txt.

(c) Make side-by-side box plots of the Cowarie Station and Brisbane data.

SOLUTION. Use lillie.test( ) and lillie.plot( ) for both analyses. The hypotheses for
each test are:

• H0: The distribution of rainfall is normal.

• Ha: The distribution of rainfall is not normal.

Begin with the Cowarie Station analysis.

> data.Ex11.Cowarie <- read.table("http://waveland.com/Glover-Mitchell/Example11-Cowarie.txt",

+ header = TRUE)

> head(data.Ex11.Cowarie, n = 3)

## Rainfall

## 1 13

## 2 34

## 3 48

> tail(data.Ex11.Cowarie, n = 3)

## Rainfall

## 116 143

## 117 183

## 118 248

> lillie.test(data.Ex11.Cowarie$Rainfall)

http://waveland.com/Glover-Mitchell/Example11-18.txt
http://waveland.com/Glover-Mitchell/Example11-18.txt
http://waveland.com/Glover-Mitchell/Example00-2.txt
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##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: data.Ex11.Cowarie$Rainfall

## D = 0.1256, p-value = 0.00009602

> lillie.plot(data.Ex11.Cowarie$Rainfall, xlab = "Annual rainfall (mm), Cowarie Stn")
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The tiny P value (about 0.0001) indicates that the null hypothesis should be rejected.
Rainfall does not follow a normal distribution at Cowarie Station. Equivalently, the graph of
the rainfall data at Cowarie Station does not remain in the 0.95 confidence band.

The Brisbane data are analyzed in a similar fashion. First read in the data from http:

//waveland.com/Glover-Mitchell/Example00-2.txt and print a few rows.

> data.Ex00.2 <- read.table("http://waveland.com/Glover-Mitchell/Example00-2.txt",

+ header = TRUE)

> head(data.Ex00.2, n = 4) # list some data

## Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

## 1 1921 129.9 16.9 194.7 203.0 19.8 197.9 167.7 4.3 44.8 28.4 57.2 226.4

## 2 1922 67.0 230.1 26.9 8.4 54.0 39.6 118.1 3.4 66.6 37.2 51.9 114.4

## 3 1923 46.7 21.4 87.1 192.4 9.1 73.9 64.5 24.4 36.1 10.9 47.1 62.5

## 4 1924 79.6 174.0 105.2 75.0 42.7 113.3 162.7 33.8 38.8 47.4 169.5 45.0

## Annual

## 1 1291.0

## 2 817.6

## 3 676.1

## 4 1087.0

Each row represents a year with rainfall totals for each of the twelve months followed
by the annual rainfall. The annual rainfall data resides in the column data.Ex00.2$Annual.
Carry out the Lilliefors test on the Annual data and plot the confidence band.

> head(data.Ex00.2$Annual) # list some data

## [1] 1291.0 817.6 676.1 1087.0 1373.9 787.5

> tail(data.Ex00.2$Annual)

## [1] 633.7 811.7 1111.1 1485.4 903.2 955.3

http://waveland.com/Glover-Mitchell/Example00-2.txt
http://waveland.com/Glover-Mitchell/Example00-2.txt
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> lillie.test(data.Ex00.2$Annual)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: data.Ex00.2$Annual

## D = 0.0706, p-value = 0.4393

> lillie.plot(data.Ex00.2$Annual, xlab = "Annual rainfall (mm), Brisbane")
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The P value for the test is 0.4393, so the rainfall in Brisbane appears to follow a normal
distribution. The graph of the rainfall remains within the 0.95 confidence band.

Next create the box plots.

> boxplot(data.Ex11.Cowarie$Rainfall, data.Ex00.2$Annual, main = "Example 11.18",

+ names = c("Cowarie", "Brisbane"), ylab = "Annual Rainfall (mm)")

●●

●●

●

Cowarie Brisbane

0
50

0
10

00
15

00
20

00

Example 11.18

A
nn

ua
l R

ai
nf

al
l (

m
m

)

EXAMPLE 11.19. The data set http://waveland.com/Glover-Mitchell/Problem01-OldFaithful.
txt lists the time interval (in minutes) between eruptions of Old Faithful for the entire

http://waveland.com/Glover-Mitchell/Problem01-OldFaithful.txt
http://waveland.com/Glover-Mitchell/Problem01-OldFaithful.txt
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year of 2010. In Problem 1 of Chapter 1 of this guide, you created a histogram of these
data. Now determine whether the eruption intervals follow a normal distribution. Create a
graphical plot of the analysis.

SOLUTION. Use lillie.test( ) and lillie.plot( ) for the analysis and plot. The hy-
potheses for the test are:

• H0: The distribution of eruption times is normal.

• Ha: The distribution of eruption times is not normal.

> data.Ex11.OF <- read.table("http://waveland.com/Glover-Mitchell/Problem01-OldFaithful.txt",

+ header = TRUE)

> head(data.Ex11.OF) # list data

## Interval

## 1 93.5

## 2 67.1

## 3 102.3

## 4 93.5

## 5 92.4

## 6 95.7

> tail(data.Ex11.OF)

## Interval

## 5694 92.4

## 5695 94.6

## 5696 90.2

## 5697 88.0

## 5698 95.7

## 5699 99.0

> lillie.test(data.Ex11.OF$Interval)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: data.Ex11.OF$Interval

## D = 0.1165, p-value < 2.2e-16

> lillie.plot(data.Ex11.OF$Interval, xlab = "Minutes between eruptions")
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The tiny P value for the test indicates that the time intervals between eruptions of Old
Faithful are not distributed normally. There are a couple of things to notice in the plot. First,
the confidence band is quite narrow because of the large sample size (n = 5699). Second,
notice how the empirical distribution first rises above the confidence band starting at about
65 minutes, then dips below the band at about 80 minutes and exceeds the band again at
about 95 minutes.

A histogram of the eruption interval data shows that it is bimodal. There is a small mode
at about 65 minutes and a much larger mode at about 95 minutes.

> hist(data.Ex11.OF$Interval, breaks = seq(50, 130, by = 5),

+ main = "Distribution of Eruption Intervals for Old Faithful, 2010",

+ xlab = "Minutes between eruptions", xaxt = 'n')

> axis(side = 1, at = seq(50, 130, by = 10), labels = seq(50, 130, by = 10))
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EXAMPLE 11.20. The file http://waveland.com/Glover-Mitchell/Example11-PGA.txt con-
tains the scoring averages for the top 195 players on PGA Tour for the year 2000 (source:
www.pgatour.com/stats/2000/r_120.html). Determine with an appropriate test whether
these averages are described by a normal distribution. Create a graphical plot of the results
of this test.

SOLUTION. Use lillie.test( ) and lillie.plot( ) for the analysis and plot. The hy-

http://waveland.com/Glover-Mitchell/Example11-PGA.txt
www.pgatour.com/stats/2000/r_120.html
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potheses for the test are:

• H0: The distribution of scoring averages is normal.

• Ha: The distribution of scoring averages is not normal.

> data.Ex11.PGA <- read.table("http://waveland.com/Glover-Mitchell/Example11-PGA.txt",

+ header = TRUE)

> head(data.Ex11.PGA, n = 10) # list data

## Player Average

## 1 Tiger_Woods 67.79

## 2 Phil_Mickelson 69.25

## 3 Ernie_Els 69.31

## 4 David_Duval 69.41

## 5 Paul_Azinger 69.68

## 6 Nick_Price 69.75

## 7 Stewart_Cink 69.79

## 8 Steve_Flesch 69.80

## 9 Tom_Lehman 69.84

## 10 Loren_Roberts 69.89

> lillie.test(data.Ex11.PGA$Average)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: data.Ex11.PGA$Average

## D = 0.0451, p-value = 0.4328

> lillie.plot(data.Ex11.PGA$Average, xlab = "Average Strokes per Round")
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> mean(data.Ex11.PGA$Average) # find the mean and standard deviation

## [1] 71.2375

> sd(data.Ex11.PGA$Average)

## [1] 0.809796
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The P value for the test is 0.4328; the scoring averages follow a normal distribution. The
graph of the averages remains within the 0.95 confidence band and quite closely tracks the
normal distribution with mean 71.24 and standard deviation 0.81.

Problem

1. (a) Example 1.8 gives snowfall measurements (in inches) for 50 consecutive years (1951–
2000) in Syracuse, NY. Determine whether snowfall in Syracuse can be modeled by a
normal distribution. Illustrate the result of your analysis with an appropriate plot.

(b) The data set http://waveland.com/Glover-Mitchell/Problem00-3.txt lists the
monthly snowfall for Buffalo, NY for each each snow season from 1940–41 to 2013–
14. Determine whether snowfall in Buffalo can be modeled by a normal distribution.
Illustrate the result of your analysis with an appropriate plot.

(c) Make side-by-side box plots of the annual snowfalls for the two cities. Test whether

the mean snowfalls for the two cities are different. Your choice of test should be determined

by the earlier parts of this question.

http://waveland.com/Glover-Mitchell/Problem00-3.txt
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Answer

The hypotheses for each test are:

• H0: The distribution of snowfall is normal.

• Ha: The distribution of snowfall is not normal.

> # Use the Lilliefors test for the Syracuse snowfall.

> lillie.test(data.Ex01.8$Snowfall)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: data.Ex01.8$Snowfall

## D = 0.1159, p-value = 0.09092

> lillie.plot(data.Ex01.8$Snowfall, xlab = "Annual snowfall (in), Syracuse")
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> # Analyze the Buffalo data in the same way.

> data.Pr00.3 <- read.table("http://waveland.com/Glover-Mitchell/Problem00-3.txt",

+ header = TRUE)

> lillie.test(data.Pr00.3$ANN)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: data.Pr00.3$ANN

## D = 0.0754, p-value = 0.3741

> lillie.plot(data.Pr00.3$ANN, xlab = "Annual snowfall (in), Buffalo")
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> lillie.test(data.Ex11.17$Length)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: data.Ex11.17$Length

## D = 0.1244, p-value = 0.7307

Both analyses and plots indicate that the snowfalls in Syracuse and Buffalo
follow normal distributions. Now create side-by-side box plots.

> boxplot(data.Ex01.8$Snowfall, data.Pr00.3$ANN,

+ names = c("Syracuse", "Buffalo"), ylab = "Annual Snowfall (in)")
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Since both distributions were normal carry out a two-sample t test. Determine
whether the variances are equal first.
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> var.test(data.Ex01.8$Snowfall, data.Pr00.3$ANN)

##

## F test to compare two variances

##

## data: data.Ex01.8$Snowfall and data.Pr00.3$ANN

## F = 0.9445, num df = 49, denom df = 73, p-value = 0.8414

## alternative hypothesis: true ratio of variances is not equal to 1

## 95 percent confidence interval:

## 0.570715 1.605178

## sample estimates:

## ratio of variances

## 0.944501

> # The variances may be assumed to be equal.

> # Carry out the appropriate t test.

> #

> t.test(data.Ex01.8$Snowfall, data.Pr00.3$ANN, var.equal = TRUE)

##

## Two Sample t-test

##

## data: data.Ex01.8$Snowfall and data.Pr00.3$ANN

## t = 4.3067, df = 122, p-value = 0.00003371

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 12.0537 32.5615

## sample estimates:

## mean of x mean of y

## 114.8860 92.5784

The mean annual snowfalls in Syracuse and Buffalo differ significantly.
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