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D

Tests of Hypothesis Involving Two Samples

This material could be inserted between Sections 7.5 and 7.6 in the text An Introduction to
Biostatistics by Glover and Mitchell (Waveland, 2015). It cross-references that text and follows
the same format.

D.1 Confidence Intervals for MX −MY

Oftentimes we want to know not only whether two populations differ in some measurement
of interest but by how much they differ. This is generally expressed as a confidence interval
for the difference in their means or medians. The Wilcoxon rank-sum test can be adapted to
calculate confidence intervals for the difference in the medians of two populations MX −MY .
The difference in the medians MX −MY is not the same as the median difference MX−Y in
paired sample tests. The median difference makes sense only when observations are paired and
one is trying to estimate Xi− Yi. The difference of the medians makes sense when the samples
are independent of each other where one is trying to estimate the difference Xi − Yj for any i
and j.

The basic assumption is that X = Y +δ, that is, the shape of the distributions for X and Y
are the same, but that the X’s are larger (or smaller) than the Y ’s by some amount δ. Hence
the medians differ by the same amount, MX −MY = δ.
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FIGURE D.1. These distributions have the same shape, but the distribution
for X is shifted δ = 4 units to the right of the distribution for Y .

It is then natural to use the differences Xi − Yj as the set of elementary estimates of
δ. We continue to use the conventions of the Wilcoxon rank-sum test with m denoting the X
sample size n the Y sample size, where m ≤ n. Since there are m choices for Xi and n choices
for Yj , there are mn differences in all for the elementary estimates.

EXAMPLE D.1. In a project for a botany class, 11 sunflower seeds were randomly assigned to
and planted in pots. One group of pots served as a control and contained commercial potting
soil. The other group of pots contained potting soil plus a fertilizer treatment. The height of each
plant (in cm) two weeks after germination is recorded in the table below. List the elementary
estimates of δ for these data.
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Fertilizer 29 32 35 36 37
Control 22 25 26 27 28 32

SOLUTION. This is most easily done in tabular form with the X’s along the left edge and the
Y ’s along the top. It is convenient to order the observations in each sample. The difference
Xi − Yj is then put in row i, column j of the table.

Xi − Yj 22 25 26 27 28 32

29 7 4 3 2 1 −3

32 10 7 6 5 4 0
35 13 10 9 8 7 3

36 14 11 10 9 8 4

37 15 12 11 10 9 5

In the example there are mn = 5 ·6 = 30 elementary estimates. As with confidence intervals
based on the sign test, the next step is to eliminate a certain number of the most extreme
estimates with the remaining estimates providing the range for the confidence interval. The
endpoint depths for the confidence interval are listed in Table J.1. Calculating 95% confidence
intervals is equivalent to two-tailed hypothesis testing at the α = 0.05 level. So locate the
columns for a two-tailed test with α = 0.05. Find the row with m = 5 and n = 6. The table
entry in the depth d-column is 4. Therefore, for a 95% confidence interval, the endpoints are the
elementary estimates with a depth of d = 4. Removing the 3 smallest and 3 largest elementary
estimates from the table, we find that a 95% confidence interval for the difference in median
heights of the sunflowers is [2, 12]. In other words, we are 95% confident that X = Y + δ where
2 < δ < 12. (How would you interpret the fact that 0 is not in this interval?)

Theory

We now show how the endpoint depths in Table J.1 were derived from the values for WX .
Ninety-five percent confidence interval calculations and two-tailed hypothesis testing are com-
plementary processes. To find a 95% confidence interval for the difference δ = X − Y we
must find the largest and smallest values of D such that when a two-sided hypothesis test H0:
X = Y +D versus Ha: X 6= Y +D is done, then H0 is accepted. For this example, with m = 5
and n = 6, Table J.1 lists the pair (18,42) at the α = 0.05 level to reject H0. Thus, to accept
H0: X = Y +D, we must find the minimum and maximum values of D so that WX is between
18 and 42.

An alternative form of Wilcoxon rank-sum test, called the Mann-Whitney U-test, makes
this easy to do. The elementary estimates correspond to all possible ways that the X and Y
observations can be compared. The test statistic U is defined as the number of comparisons
in which Xi is larger than Yj . In other words, U is the number of positive entries in the table
of differences Xi − Yj . (Ties between Xi and Yj , which appear as 0’s in the difference table,
are counted as 0.5.) For instance, in Example D.1, U = 28.5 because there were 28 positive
differences in the table and a 0 (indicating a tie).

The test statistic U is related to WX in a simple way. Recall that WX is the sum of the
ranks of the X observations in the combined X and Y data set. To determine the combined
rank of each Xi, we need to know the number of X and Y observations that are smaller than
Xi. That is, we need the rank of Xi within the X sample and the number of Y observations
smaller than Xi. In Example D.1, X1 = 29 is the smallest X observation, so its X rank is 1.
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But it is larger than five Y observations. Thus, X1 = 29 has a rank of 1+5 = 6 in the combined
set of X and Y observations. The table below shows how this works for the entire X sample.

Xi 29 32 35 36 37 Sum

X rank 1 2 3 4 5 15 ← 1 + 2 + · · ·+ 5

Number of Y ’s smaller than Xi 5 5.5 6 6 6 28.5 ← U

Combined rank 6 7.5 9 10 11 43.5 ←WX

More generally, since there are m observations in the X sample, the X ranks will always
sum to 1 + 2 + · · ·+m = m(m+1)

2 . So the sum of the combined ranks is WX = m(m+1)
2 + U or

U = WX −
m(m+ 1)

2
,

where m is the smaller sample size. For the data in Example D.1,

U = WX −
m(m+ 1)

2
= 43.5− 5(6)

2
= 28.5,

the same as the number of positive entries in the difference table.

Earlier we said that to find the confidence interval, we need the minimum and maximum
values of D so that H0: X = Y + D is accepted, that is, so that WX is between 18 and 42.
Converting the WX values to U values, since m = 5, then U is between 18 − 5(5+1)

2 = 3 and

42 − 5(5+1)
2 = 27. But U is just the number of positive entries in the table of differences. So

we must find the minimum value of D so that when D is added to each Yj , the (new) table
of differences contains more than 3 positive entries, i.e, at least 4 nonnegative entries. And we
must find the maximum value for D so that when D is added to each Yj , the table of differences
contains fewer than 27 positive entries. Since there are mn = 30 differences, fewer than 27
positive differences is equivalent to 4 or more nonpositive differences. That is why we focused
on a depth of 4 in the original table to find the confidence interval endpoints.

Look back at the table of differences in Example D.1. The depth 4 values were 2 and
12. If we add D = 2 to each Y value, then Xi − (Yj + 2) = (Xi − Yj) − 2. That is, each
difference decreases by 2 (see the table below). Since 2 had depth 4 in the original table,
now 2 − D = 2 − 2 = 0 has depth 4 in the new table. The table now contains 4 nonpositive
entries. The corresponding U value is 26.5, for the 26 positive values and one 0 (reflecting the
tie between the X and Y +D values) in the new table.

Xi − (Yj + 2) 24 27 28 29 30 34

29 5 2 1 0 −1 −5

32 8 5 4 3 2 −2
35 11 8 7 6 5 1
36 12 9 8 7 6 2

37 13 10 9 8 7 3

Similarly, if we add D = 12 to each Y value, then each difference from the original table is
decreased by 12. Now the table contains 3 positive entries and a 0. The corresponding U value
is 3.5.
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Xi − (Yj + 12) 34 37 38 39 40 44

29 −5 −8 −9 −10 −11 −15

32 −2 −5 −6 −7 −8 −12

35 1 −2 −3 −4 −5 −9
36 2 −1 −2 −3 −4 −8

37 3 0 −1 −2 −3 −7

Notice that the U values are just greater than 3 and just less than 27. Converting to WX

values by adding m(m+1)
2 = 15 to each, we see that 18.5 ≤WX ≤ 41.5, just inside the range to

accept H0: X = Y +D.

Thus, we see that the depth values d listed in Table J.1 were derived by taking the lower
critical value for WX , converting to a lower critical value for U by subtracting m(m+1)

2 and then
adding 1 to move out of the “reject H0” range and into the “accept H0” range.

D.2 Problems

1. Return to Example 7.10 in the main text where we considered two color morphs (green and red) of
the same species of sea star were found at Polka Point, North Stradbroke Island.

Red 108 64 80 92 40

Green 102 116 98 132 104 124

(a) List the elementary estimates for these data.

(b) find a 95% confidence interval for the difference δ = X − Y .

2. (a) An undergraduate ecology student doing research on niche dimensions decided to repeat part
of R. H. MacArthur’s famous study of foraging behavior of warblers in northeastern coniferous
forests. She marked the heights of various branches in several conifers with colored tape and
observed two similar species of warbler with binoculars and recorded the average foraging height
for each bird. The heights in feet for the individuals observed are recorded below. Find a 95%
confidence interval for the difference in median foraging heights.

Bay-breasted warbler 17 10 13 12

Blackburnian warbler 15 16 18 19 23 24 26

(b) Interpret your confidence interval as a test of hypothesis about the difference in median foraging
heights for the two species.

3. (a) The Southern cavefish, Typhlichthys subterranus, is found mostly in the dolomite aquifiers of
the Salem Plateau in the South Central Ozarks. Populations in two different caves in central
Missouri were sampled and the length of each individual was measured (in cm) and is recorded
below. Find a 95% confidence interval for the difference in median lengths.

Cave X 3.8 6.6 3.2 3.9 4.5 6.8 2.8

Cave Y 3.0 3.5 3.8 3.9 4.3 4.6 6.0

(b) Interpret your confidence interval as a test of hypothesis about the difference in median lengths
for the two populations.
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4. In order for Banksia serrata to germinate, fire is required to open its seed cones. In order to
understand the effect of fire on these trees, two neighboring sites were surveyed. Site A has been
burned frequently during the last 80 years, while fire at Site B has been infrequent during this period.
It is hypothesized that the different frequency of fire will result in larger median DBH for B. serrata
(in cm) at location B than at location A. Find a 95% confidence interval for the difference in median
DBH for the two locations. Interpret your result.

Site A 12 16 20 26 30 32 36 46

Site B 28 34 44 48 48 50



6 APPENDIX D: Tests of Hypothesis Involving Two Samples

D.3 Answers

1. (a) Order the observations in each sample. The difference Xi − Yj is then put in row i, column j of
the table.

Xi − Yj 98 102 104 116 124 132

40 −58 −62 −64 −76 −84 −92
64 −34 −38 −40 −52 −60 −68

80 −18 −22 −24 −36 −44 −52

92 −6 −10 −12 −24 −32 −40
108 10 6 4 −8 −16 −24

(b) Locate the columns in Table J.1 for a two-tailed test with α = 0.05. Find the row with m = 5
and n = 6. The table entry under the depth d-column reads 4. Therefore, for a 95% confidence
interval, the endpoints are the elementary estimates with a depth of d = 4. Thus, a 95%
confidence interval for the difference in median lengths of the sea stars is [−68,−6].

2. (a) The table of differences is

Xi − Yj 15 16 18 19 23 24 26

10 5 6 8 9 13 14 16

12 3 4 6 7 11 12 14
13 2 3 5 6 10 11 13

17 −2 −1 1 2 6 7 9

From Table J.1 with m = 4 and n = 7, the endpoint depth is 4. Therefore, the confidence
interval is [2, 13].

(b) Since 0 is not in the interval, there is a significant difference in foraging heights.

3. (a) The table of differences is

Xi − Yj 3.0 3.5 3.8 3.9 4.3 4.6 6.0

2.8 −0.2 −0.7 −1.0 −1.1 −1.5 −1.8 −3.2
3.2 0.2 −0.3 −0.6 −0.7 −1.1 −1.4 −2.8

3.8 0.8 0.3 0.0 −0.1 −0.5 −0.8 −2.2

3.9 0.8 0.3 0.0 −0.1 −0.5 −0.8 −2.2
4.5 1.5 1.0 0.7 0.6 0.2 −0.1 −1.5

6.6 3.6 3.1 2.8 2.7 2.3 2.0 0.6
6.8 3.8 3.3 3.0 2.9 2.5 2.2 0.8

From Table J.1 with m = 7 and n = 7, the endpoint depth is 9. Therefore, the confidence
interval is [−1.1, 2.5].

(b) Since 0 is in the interval, there is no evidence for a significant difference in lengths of cavefish at
the two locations.

4. For a 95% confidence interval for differences in median DBH for the two locations use d = 8 as the
endpoint depth. From the table of differences below, the 95% confidence interval for B−A is [2, 30].
It does not contain 0 so there is evidence of a significant difference in DBH for the two locations.

B −A 12 16 20 26 30 32 36 46

28 16 12 8 2 −2 −4 −8 −18
34 22 18 14 8 4 2 −2 −12

44 32 28 24 18 14 12 8 −2

48 36 32 28 22 18 16 12 2
48 36 32 28 22 18 16 12 2

50 38 34 30 24 20 18 14 4



E

k-Sample Tests of Hypothesis:
The Analysis of Variance

This material follows naturally as third and fourth subsections of Section 8.2 (Mean Separation
Techniques for Model I ANOVAs) in the text An Introduction to Biostatistics, Third Edition,
by Glover and Mitchell (Waveland, 2015). It cross-references that text and follows the same
format. The material is repetitive because each section is meant to stand alone. One would
not ordinarily cover five different mean separation techniques.

E.1 The Bonferroni t Test and the Student-Newman-Keuls Test

When H0 is rejected as in Examples 8.1 and 8.2, the conclusion at that point is at least one
pair of means is not equal. The task at hand is to discover exactly which means are different.
The techniques to do this are called mean separation techniques or multiple comparisons.
There are many of these techniques available, each with its own advantages and disadvantages.
In Chapter 8 we presented two of the more common approaches: the Bonferroni-Holm t
test and the Tukey test. We now consider two additional approaches: Bonferroni t test
and the Student-Newman-Keuls test. Their are some similarities to the earlier tests and a
researcher would chose one of these techniques to employ at the time the experiment is planned.

In Example 8.1 there are three sample means, and so there are(
3

2

)
=

3!

2!1!
= 3

possible pairwise mean comparisons:

H0: µU = µ90% H0: µU = µ80% H0: µ90% = µ80%
Ha: µU 6= µ90% Ha: µU 6= µ80% Ha: µ90% 6= µ80%.

The Bonferroni t Test

The two-sample t test presented in Chapter 7 with the assumption of equal variances had test
statistic

t =
X1 −X2√
s2
p

(
1
n1

+ 1
n2

) with ν = n1 + n2 − 2.

We used s2
p, a pooled variance, because we assumed equal population variances based on the

preliminary F test. The assumptions about one-way ANOVAs include equal variances for all
populations under investigation. The estimate of this variance is MSError in the ANOVA table.
The Bonferroni t test uses this fact to generate the following test statistic.
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FORMULA E.1. The Bonferroni t test statistic for Model I ANOVAs is

Bonferroni t =
Xi. −Xj.√

MSError

(
1
ni

+ 1
nj

) ,
where i and j represent any two treatment means to be compared and the degrees of freedom ν is N −k,
where N is the total number of observations in the experiment and k is the number of treatments. That
is, ν is the degrees of freedom of MSError.

Note: The Bonferroni t test statistic is the same as the Bonferroni-Holm t test statistic (com-
pare to Formula 8.6 in the main text).

Bonferroni t tests are usually run at a smaller α level than the global F test of the ANOVA
table. This is necessary because we need to manage the probability of Type I error. If all
Bonferroni t tests are performed at α, then the overall probability of at least one Type I error,
denoted by α′, is larger than α and its value is usually unknown. It can be shown that with
three tests conducted at the α level, α′ is at most 1 − (1 − α)3. For example, if α = 0.05 and
we do three Bonferroni t tests, the probability of making at least one Type I error becomes
at most 1 − (1 − .05)3 = 0.143. Using α = 0.05 with six comparisons, α′ = 0.265 and with
10 comparisons, α′ = 0.401. So as the number of means to be separated increases, the overall
probability of a Type I error can quickly become unacceptably high.

Most Bonferroni t tests are, therefore, conducted at an α level lower than the global F test.
A general rule is to determine an experimentwise acceptable upper boundary for the probability
of Type I error, say, b, and divide this probability by c, the actual number of comparisons run,
to determine the α level for each comparison. For Example 8.1 if we wished the experimentwise
α′ to be 0.05, we would use 0.05

3 = 0.016 as the α level for each Bonferroni t test.

SOLUTION TO EXAMPLE 8.1: Bonferroni Mean Separation. Let’s now complete the anal-
ysis for Example 8.1 via Bonferroni t tests with experimentwise α′ = 0.05, so that 0.05

3 = 0.016
is the α level for each test. Recall from earlier calculations that the ordered means are

XU = 2.44 X90% = 3.18 X80% = 3.54

nU = 5 n90% = 5 n80% = 5

MSError = 0.203 ν = N − k = 12

Since all the sample sizes are equal, the denominator in the expression for the Bonferroni t
statistic is the same for all tests,√

MSError

(
1

ni
+

1

nj

)
=

√
0.203

(
1

5
+

1

5

)
= 0.285.

From Table C.4 the critical t value is t12,0.016 = 2.779.
For the first comparison: H0: µ80% − µU. From Formula E.1, the test statistic is

Bonferroni t =
X80% −XU√

MSError

(
1

n80%
+ 1

nU

) =
3.54− 2.44

0.285
= 3.86 > 2.779.

Reject H0. The mean for 80% diet is significantly different (higher) than the unlimited diet.
For the second comparison: H0: µ80% − µ90%.

Bonferroni t =
3.54− 3.18

0.285
= 1.263 < 2.779.
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Accept H0. The mean for 80% diet is not significantly different than the 90% diet.
For the third comparison: H0: µ90% − µU.

Bonferroni t =
3.18− 2.44

0.285
= 2.596 < 2.779.

Accept H0. The mean for 90% diet is not significantly different than the unlimited diet.
In summary, the Bonferroni t tests indicate that the mean for unlimited diet is significantly

different from the 80% diet. The unlimited diet is not significantly different from the 90% diet
and the 90% and 80% diets are not significantly different from each other. While the difference
between the unlimited and 90% diets is not significant statistically, it is large enough that further
study with larger samples might produce data that will allow rejection of H0. We summarize
these results with the superscripts a and b:

U 90% 80%
2.44a 3.18a,b 3.54b

The Student-Newman-Keuls Test

We now present a second method called the Student-Newman-Keuls test (SNK) that is
used to separate means in a fixed treatment or Model I ANOVA. This test uses the rank orders
of the sample means to determine the sequence in which different means are compared. This
test is only slightly more complicated to apply than the Tukey test discussed in Section 8.2. It
involves the following protocol.

Step 1. Linearly order the k sample means from smallest to largest.

Step 2. The Student-Newman-Keuls test uses the so-called q-statistic to compare means, that
is described in the next step. Use Table J.5 to determine the q critical value at the selected
α-level for the the number of means in the range being investigated and for the degrees
of freedom of MSError in the ANOVA.

Step 3. A convenient way to proceed through the comparisons is to compare the largest mean
with the smallest, then the largest with the next smallest, and so on until the largest
mean has been compared to all means. Then compare the second largest mean to the
smallest, and then the second largest with the next smallest, and so on. For example, we
would compare four means (ranked 1 through 4) as follows: 4 vs. 1, 4 vs. 2, 4 vs. 3, 3
vs. 1, 3 vs. 2, and 2 vs. 1. To compare means i and j in this rank order (H0: µi = µj)
calculate the q-statistic

FORMULA E.2. The q-statistic for use in the Student-Newman-Keuls mean separation tests is
defined as

q =
Xi −Xj√

MSError

2

(
1
ni

+ 1
nj

) ,
where MSError comes from the ANOVA table and ni and nj are the treatment sample sizes. When
all the sample sizes are equal to n, this simplifies to

q =
Xi −Xj√

MSError

n

.
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Always subtract the larger mean from the smaller mean so that the q-statistic is positive.
If q is larger than the critical value from Step 2, reject H0: The means are different.
Otherwise accept H0. Note: The q-statistic is calculated exactly as for the Tukey test
(see Formula 8.7 in the main text), however, the q critical values change depending on
the number of means in the range being compared. (See the example below.)

We now analyze the means in Example 8.1 with the Student-Newman-Keuls test (SNK). In
real life we would choose either the Bonferroni’s t test or the SNK test, but not both. Each
test is attempting the same thing, to separate means that are significantly different.

SOLUTION TO EXAMPLE 8.1: SNK Mean Separation. We use the procedure outlined
above.

Step 1. For Example 8.1 the ordered means are

XU = 2.44 X90% = 3.18 X80% = 3.54

nU = 5 n90% = 5 n80% = 5

MSError = 0.203 ν = N − k = 12

Step 2. Let α = 0.05. Using Table J.5 with ν = 12 (the degrees of freedom of MSError) and
k = 3 means to compare, the q critical value for comparing a range of three means (the smallest
to the largest) is q(0.05,12,3) = 3.773 and the q critical value for comparing a range of two means
(adjacent means) is q(0.05,12,2) = 3.083.

Step 3. In this example n = 5 is the common treatment sample size so the denominator of all
the q-statistics will be √

MSError

n
=

√
0.203

5
= 0.201.

Now use the ordering from Step 1 and then proceed though the comparisons as outlined in the
general description of Step 3 on page 9.

(a) Compare the 80% diet to unlimited diet, H0: µ80% = µU , a range of three means.

q =
Xi −Xj√

MSError

n

=
3.54− 2.44

0.201
= 5.473 > 3.773.

Reject H0. The means the for 80% and unlimited diets are significantly different.

(b) Compare the 80% diet to the 90% diet, H0: µ80% = µ90%, a range of two means.

q =
3.54− 3.18

0.201
= 1.791 < 3.083.

Accept H0. The means the for 80% and 90% diets are not significantly different.

(c) Compare the 90% diet to the unlimited diet, H0: µ90% = µU .

q =
3.18− 2.44

0.201
= 3.682 > 3.083.

Reject H0. The means the for 90% and unlimited diets are significantly different.
Overall, only the 80% and 90% diets differ from the unlimited diet. This result is

U 90% 80%
2.44a 3.18b 3.54b
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That the unlimited diet is significantly different from both of the restricted diets (90% and 80%)
is indicated by the different superscripts used. That the 90% and 80% diets are not significantly
different is reflected in the use of the same superscript.

The outcome with the SNK test is slightly different from the Bonferroni t test because we
were quite conservative in our choice of α for the Bonferroni statistics. Both analyses indicate
that the “lean and mean” rats live longer. In general the Bonferroni t tests will be more
conservative than the SNK test if both are applied at the same experimentwise alpha level. By
more conservative we mean it will be more difficult to reject H0 and will produce more Type
II errors.

SOLUTION TO EXAMPLE 8.2: SNK Mean Separation. We now complete the analysis of
the field study on the cephalon lengths of trilobites with a Student-Newman-Keuls test.

Step 1. The ordered means are

Site IV I III II

X 5.0 7.0 8.0 9.0
n 15 8 11 5

MSError = 4.71

Step 2. Let α = 0.05. Use Table J.5 with ν = 35 (the degrees of freedom of MSError) to obtain
the q critical values: Since 35 degrees of freedom isn’t in the table, use the nearest smaller value,
30, to be conservative. Check that for a range of four means q(0.05,30,4) = 3.845, for a range of
three means q(0.05,30,3) = 3.486, and for a range of two means q(0.05,30,2) = 2.888.

Step 3. As with many field studies the sample sizes are unequal simply because all the fossils
found were measured and different numbers were found at different sites. This requires care in
computing the q statistic. Use the ordering from Step 1 and then proceed though the comparisons
as outlined in the general description of Step 3 on page 9.

(a) Compare site II to site IV, H0: µII = µIV, a range of four means.

q =
Xi −Xj√

MSError

2

(
1
ni

+ 1
nj

) =
9.0− 5.0√
4.71
2

(
1
5 + 1

15

) = 5.048 > 3.845.

Reject H0. Mean cephalon lengths at sites II and IV are significantly different.

(b) Compare site II to site I, H0: µII = µI, a range of three means.

q =
9.0− 7.0√
4.71
2

(
1
5 + 1

8

) = 2.286 < 3.486.

Accept H0. The mean cephalon lengths at sites II and I are not significantly different.

(c) Compare site II to site III, H0: µII = µIII, a range of two means.

q =
9.0− 8.0√
4.71
2

(
1
5 + 1

11

) = 1.208 < 2.888.

Accept H0. The mean cephalon lengths at sites II and III are not significantly different.
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(d) Compare site III to site IV, H0: µIII = µIV, a range of three means

q =
8.0− 5.0√

4.71
2

(
1
11 + 1

15

) = 4.925 > 3.486.

Reject H0. Mean cephalon lengths at these sites are significantly different.

(e) Compare site III to site I, H0: µIII = µI, a range of two means.

q =
8.0− 7.0√
4.71
2

(
1
11 + 1

8

) = 1.402 < 2.888.

Therefore, mean cephalon lengths at sites III and I are not significantly different, either.

(f ) Compare site I to site IV, H0: µI = µIV, a range of two means.

q =
7.0− 5.0√
4.71
2

(
1
8 + 1

15

) = 2.979 > 2.888.

Reject H0. Mean cephalon lengths at these sites I and IV significantly different.

From these comparisons we find that site IV has a significantly smaller mean than the other
sites, while sites I, II, and III are not significantly different, as is summarized below.

IV I III II
5.0a 7.0b 8.0b 9.0b

This may mean that site IV represents a different species of trilobite. The biological signifi-
cance must be added after determination of the statistical significance. Note also the difference
of 2 mm between means IV and I is significant, but not between means II and I. The larger
sample size at site IV is principally the cause for this discrepancy.

In both Examples 8.1 and 8.2, the global F tests indicated some differences in means. The
mean separation techniques of Bonferroni t tests or Student-Newman-Keuls tests allowed us to
pinpoint the differences.

E.2 Duncan’s Multiple Range Test

When H0 is rejected as in Examples 8.1 and 8.2, the conclusion at that point is at least one pair
of means are not equal. The task at hand is to discover exactly which means are different. The
techniques to do this are called mean separation techniques or multiple comparisons. There
are many of these techniques available, each with its own advantages and disadvantages. In
Section 8.2 of the text we described two of these: the Bonferroni-Holm t test and the Tukey
test. In Section G.1 we described two additional mean separation methods: the Bonferroni
t test and the Student-Newman-Keuls test. In this section we present another such test,
the Duncan’s multiple range test. In Example 8.1 there are three sample means, and so
there are (

3

2

)
=

3!

2!1!
= 3

possible pairwise comparisons.

H0: µU = µ90% H0: µU = µ80% H0: µ90% = µ80%
Ha: µU 6= µ90% Ha: µU 6= µ80% Ha: µ90% 6= µ80%
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The Duncan’s multiple range test uses the rank orders of the sample means to determine
the shortest significant range or SSRp. Any two means that differ by more than this value are
considered significantly different. This test is rather easy to apply and is among the oldest
mean separation techniques.

Step 1. Linearly order the k sample means from smallest to largest.

Step 2. Calculate the shortest significant range (SSRp) utilizing

FORMULA E.3.

SSRp = rp

√
(ni + nj)MSError

2ninj
,

where

• rp is a table value from Table J.6,

• MSError is the error mean square from the ANOVA Table,

• ni and Nj are the sample sizes of the treatments being compared,

• ν = N − k is the degrees of freedom for the MSError used in the ANOVA table.

Note: When all of the treatment sample sizes are equal to n, the formula simplifies to

SSRp = rp

√
MSError

n
.

Step 3. For any subset of p sample means 2 ≤ p ≤ k, compare the absolute value of the
difference of their means (range) to the appropriate SSRp in Table J.6. If the range
of the means under consideration is greater than the SSRp, the population means are
considered significantly different. A convenient way to proceed through the comparisons
is to compare the largest mean with the smallest, then the largest with the next smallest,
and so on until the largest mean has been compared to all means. Then compare the
second largest mean to the smallest, and then the second largest with the next smallest,
and so on. For example, we would compare four means (ranked 1 through 4) as follows:
4 vs. 1, 4 vs. 2, 4 vs. 3, 3 vs. 1, 3 vs. 2, and 2 vs. 1. This ensures that the differences are
always positive.

EXAMPLE E.1. Analyze the means in Example 8.1 with Duncan’s multiple range test (DMRT).
In real life one would choose in advance either the Bonferroni-Holm t test, the Tukey test,
Bonferroni’s t test, the Student-Newman-Keuls test, or DMRT, but not more than one of these.
Each test is attempting to separate means.

SOLUTION. Use the process outlined above.

Step 1. For Example 8.1 the means are already rank-ordered.

XU = 2.44 X90% = 3.18 X80% = 3.54

nU = 5 n90% = 5 n80% = 5

MSError = 0.203 ν = N − k = 12
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Step 2. Here α = 0.05, and the common sample size is n = 5. So√
MSError

n
=

√
0.203

5
= 0.201

with ν = 12. Use Formula E.3 and Table J.6 to calculate SSRp in the table below.

Number of means

2 3

rp 3.082 3.225

SSRp = rp

√
MSError

n
0.619 0.648

Step 3. Start by comparing the largest to the smallest mean.

(a) Compare the 80% diet to unlimited diet, H0: µ80% = µU , a range of three means.

|3.54− 2.44| = 1.10.

Here SSRp = 0.648 for a range of three means. Since 1.10 > 0.648, the two means are
considered significantly different. Reject H0.

(b) Compare the 80% diet to the 90% diet, H0: µ80% = µ90%, a range of two means.

|3.54− 3.18| = 0.36.

The two means are adjacent in the ordering so SSRp = 0.619. Since 0.36 < 0.619, the
two means are not considered significantly different. Accept H0.

(c) Compare the 90% diet to the unlimited diet, H0: µ90% = µU , a range of two means.

|3.18− 2.44| = 0.74 > 0.619 = SSRp.

Reject H0. The means the for 90% and unlimited diets are significantly different.
We summarize these results with the superscripts a and b.

2.44a 3.18b 3.54b.

That the unlimited diet is significantly different from both of the restricted diets (90% and 80%)
is indicated by the different superscripts used. That the 90% and 80% diets are not significantly
different is reflected in the use of the same superscript. The outcome with the DMRT is slightly
different from the Bonferroni t test because we were quite conservative in our choice of α for the
Bonferroni statistics. Both analyses indicate that the “lean and mean” rats live longer.

EXAMPLE E.2. Complete the analysis of Example 8.2, a field study on the cephalon lengths
of trilobites using DMRT.

SOLUTION. As with many field studies the sample sizes are unequal simply because all the
fossils found were measured and different numbers were found at different sites. The overall
ANOVA indicated that some of the means are significantly different. We now look for specific
differences with a DMRT.

Step 1. For Example 8.2 the ordered means are

Site IV I III II

X 5.0 7.0 8.0 9.0
n 15 8 11 5

MSError = 4.71
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Step 2. Let α = 0.05. Use Table J.6 with ν = 35 to obtain the values of rp below. Since 35
degrees of freedom isn’t in Table J.6, use the next lower value, in this case 30. All four sample
sizes are different requiring a new calculation for each SSRp.

Number of means

2 3 4

rp 2.888 3.035 3.131

Step 3. Start with the largest and smallest means. We briefly indicate the calculations in-
volved.

(a) To compare II to IV, a range of four means, first calculate SSRp using Formula E.3.

SSRp = rp

√
(ni + nj)MSError

2ninj
= 3.131

√
(5 + 15)4.71

2(5)(15)
= 2.481.

Since

|Xi. −Xj.| = |9.0− 5.0| = 4.0 > 2.481 = SSRp,

the means are significantly different.

(b) Next compare II to I, a range of three means.

SSRp = 3.035

√
(5 + 8)4.71

2(5)(8)
= 2.655.

This time

|Xi. −Xj.| = |9.0− 7.0| = 2.0 < 2.655 = SSRp,

so the means are not significantly different.

(c) To compare II to III, a range of two means,

SSRp = 2.888

√
(5 + 11)4.71

2(5)(11)
= 2.390.

Here

|Xi. −Xj.| = |9.0− 8.0| = 1.0 < 2.390 = SSRp,

so the means are not significantly different.

(d) To compare III to IV, a range of three means.

SSRp = 3.035

√
(11 + 15)4.71

2(11)(15)
= 1.849.

Since

|Xi. −Xj.| = |8.0− 5.0| = 3.0 > 1.849 = SSRp,

the means are significantly different.

(e) To compare III to I, a range of two means,

SSRp = 2.888

√
(11 + 8)4.71

2(11)(8)
= 2.059.



16 APPENDIX E: k-Sample Tests of Hypothesis: The Analysis of Variance

Here
|Xi. −Xj.| = |8.0− 7.0| = 1.0 < 2.059 = SSRp,

so the means are not significantly different.

(f ) Finally, to compare I to IV, a range of two means,

SSRp = 2.888

√
(8 + 15)4.71

2(8)(15)
= 1.940.

Since
|Xi. −Xj.| = |7.0− 5.0| = 2.0 > 1.940 = SSRp,

the means are significantly different.
From these comparisons we find that site IV has a significantly smaller mean than the other

sites, while sites I, II, and III are not significantly different, as is summarized below.

Site

IV I III II

5.0a 7.0b 8.0b 9.0b

This result may mean that site IV represents a different species. The biological significance
must be layered upon the statistical significance. Note also the difference of 2 mm between
means IV and I is significant, but not between means I and II. The larger sample size in site IV
is principally the cause for this discrepancy.

E.3 Problems

1. To test the effectiveness of various denture adhesives, an instrument called the TA.XT2i Texture
Analyzer made by Texture Technologies Corp. was used to measure the amount of force required
to separate dentures from a mouth and gum cast. The force required for separation was recorded
in decigrams. The adhesives were: (A) karaya, (B) karaya with sodium borate, (C) carboxymethyl-
cellulose sodium (32%) and ethylene oxide homopolymer, and (D) carboxylmethylcellulose sodium
(49%) and ethylene oxide homopolymer.

A B C D

71 76 75 80
79 70 81 82

80 90 60 91
72 80 66 95

88 76 74 84
66 82 58 72

Ti. 456 474 414 504

Xi 76 79 69 84
s2i 62 46 83.2 66.8

CSSi 310 230 416 334

(a) Are there any significant differences among these denture adhesives holding abilities? Analyze
with ANOVA.

(b) If mean separation is need use DMRT.

(c) Alternatively, carry out mean comparisons with a Student-Newman-Keuls t test, if necessary.
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2. Workers at a tree farm decided to test the efficacy of three fertilizer mixtures on the growth of
Norway maple seedlings, Acer platanoides. The table below contains the heights of seedlings (in
feet) for the three fertilizer treatments.

Fertilizer mixture

A B C

2.0 2.3 3.1

2.1 2.9 1.5

2.4 1.5 2.2
2.8 1.2 2.9

2.9 1.9 1.7

3.1 1.9 2.1
3.2 3.4 2.8

3.7 2.1 1.5

3.8 2.6 2.8
4.1 2.4 2.2

Ti. 30.1 22.2 22.8
CSSi 4.61 3.82 3.20

si 0.72 0.61 0.60

∑
i

∑
j

X2
ij = 203.49, T.. = 75.1, SSTotal = 15.49

(a) Determine if there are significant difference in the heights among the three treatments.

(b) If mean separation is required use either DMRT or SNK.

3. Current fitness industry trends include a growing interest in non-competitive boxing programs. A
study was conducted to examine the physiological responses of punching at various tempos. Using
commercially available boxing equipment, twelve male boxing-trained subjects performed straight
left and right punches at four different tempos (60, 80, 100, and 120 punches per minute). Each
trial lasted two minutes, similar to that of traditional boxing-round training. Oxygen consumption
(ml/kg/min)), and heart rate (bpm) were monitored continuously during each round using open cir-
cuit spirometry and telemetry. Summary data are recorded below. (Based on concepts in L. Kravitz,
et al. www.unm.edu/∼lkravitz/Research%20Abstrs/punchingtempo.html.)

Punches/min 60 80 100 120 Total

ni 12 12 12 12 48

Xi 25.2 28.0 28.3 29.9

si 3.2 3.4 3.0 3.1
Ti 302.4 336 339.6 358.8 1336.8

(a) Use ANOVA to determine whether there is a difference in oxygen consumption among the various
tempos.

(b) If so, which pairs are different? Use either Bonferroni t tests or DMRT.

4. An instructor in a second-term calculus course wishes to determine whether the year in college has
any effect on the performance of his students on their final exam. The table below lists the exam
grade (out of 150) for students categorized by year. Are there significant differences in performance
among years? Analyze with ANOVA and Bonferroni t tests, if necessary.
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First year Sophomore Junior

122 117 72

111 97 91
104 113 71

118 123 72

113 130 96
98 121

129

111
127

5. For many years practitioners of traditional Chinese medicine have advocated oolong tea consumption
for weight control. Researchers worked with a strain of adult female rats that spontaneously become
obese on a normal diet. For 10 weeks, the researchers let the animals eat all they wanted but laced
the chow of some with a dried extract of brewed oolong tea. All the animals ate about the same
amount of food. Group I got 2% of their food as tea extract by weight. Group II got 4% of their
food as tea extract by weight. Group III didn’t have any tea extract in their chow. Data are weight
gains in grams with 15 rats per group.

Group I II III

Xi 40 20 120

CSSi 1400 1120 1890

Analyze the data with ANOVA techniques. If mean comparisons are required, use SNK.

6. In a study on brain development in the Norway rat various diets were compared for their effects on
cortex weight. Diet one consisted of commercial lab rat chow. Diet two was the commercial rat chow
augmented with vitamins and minerals. Diet three consisted of fresh grains and vegetables. Diet
four was similar to three except a 2% alcohol solution replaced the normal drinking water. Twenty
two-week old rats were randomly assigned to one of the diets; all other conditions remained the
same. After four months the rats were sacrificed and their cortex weights recorded in milligrams.

Cortex weight (mg)

Diet I Diet II Diet III Diet IV

650 660 700 675
670 700 710 700
665 680 690 660

680 690 725 685
685 695 715 675

Did diet affect the cortex weights? Analyze with one-way ANOVA. Use Bonferroni t tests if
mean comparisons are appropriate.
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E.4 Answers

1. (a) The hypotheses are H0 : µA = µB = µC = µD versus Ha : at least one pair of µi’s are different.
Test with α = 0.05.

SSTotal = 144294− (1848)2

24
= 1998

SSError =
∑
i

CSSi = 1290

SSTreat = 1998− 1290 = 708

Source of variation Sum of squares df MS F c.v.

Adhesives 708 3 236.0 3.66 3.10
Error 1290 20 64.5

Total 1998 23

Since 3.66 > 3.10, reject H0. At least some of the denture adhesives are significantly different.

(b) Use a Duncan’s multiple range test to locate these differences.√
MSError

n
=

√
64.5

6
= 3.28.

Number of means

2 3 4

rp 2.950 3.097 3.190

SSRp = rp

√
MSError

n
9.676 10.158 10.463

Look at the differences in the means and compare to the appropriate SSRp. Adhesives C, A,
and B are not significantly different. A, B, and D are not significantly different. Only C and D are
significantly different.

C A B D

69a 76ab 79ab 84b

(c) Use a Student-Newman-Keuls test to locate these differences. From Table C.9 with α = 0.05
and ν = 20, we obtain the critical values for the test.

k 2 3 4
q c.v. 2.950 3.578 3.958

To calculate the q-statistic use

q =
Xi −Xj√

MSError

n

=
Xi −Xj√

64.5
6

=
Xi −Xj

3.28
.

To compare the largest and smallest means,

q =
84− 69

3.28
= 4.573.

The results of the calculations are summarized below.
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Comparison q statistic k c.v. Conclusion

D to C 4.573 4 3.958 Reject H0

D to A 2.439 3 3.578 Accept H0

D to B 1.524 2 2.950 Accept H0

B to C 3.049 3 3.578 Accept H0

B to A 0.915 2 2.950 Accept H0

A to C 2.134 2 2.950 Accept H0

Adhesives C, A, and B are not significantly different. A, B, and D are not significantly different.
Only C and D are significantly different.

C A B D
69a 76ab 79ab 84b

2. The hypotheses are H0 : µA = µB = µC versus Ha : at least one pair of µi’s are different.

SSError =
∑
i

CSSi = 11.63

SSTreat = 15.49− 11.63 = 3.86

Source of variation Sum of squares df MS F c.v.

Locations 3.86 2 1.93 4.49 3.35

Error 11.63 27 0.43

Total 15.49 29

Since 4.49 > 3.35, reject H0. At least one treatment mean is significantly different from the
others.

Method 1: Use DMRT to locate the differences. The ordered means are

B C A

Xi 2.22 2.28 3.01

To calculate the SSRp use √
MSError

n
=

√
0.43

10
= 0.21.

Number of means

2 3

rp 2.919 3.066

SSRp = rp

√
MSError

n
0.613 0.644

Look at the differences in the means and compare to the appropriate SSRp. Treatment A is
significantly different from treatments B and C.

B C A

2.22a 2.28a 3.01b

Method 2: Use SNK to locate the differences. The ordered means are
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B C A

Xi 2.22 2.28 3.01

From Table C.9 with α = 0.05 and ν = 27, we obtain the critical values for the test.

k 2 3

q c.v. 2.919 3.532

To calculate the q-statistic use

q =
Xi −Xj√

MSError

n

=
Xi −Xj√

0.43
10

=
Xi −Xj

0.207
.

To compare the largest and smallest means,

q =
3.01− 2.22

0.207
= 3.816.

The results of the calculations are summarized below.

Comparison q statistic k c.v. Conclusion

A to B 3.816 3 3.532 Reject H0

A to C 3.527 2 2.919 Reject H0

C to B 0.290 2 2.919 Accept H0

Treatment A is significantly different from treatments B and C.

B C A

2.22a 2.28a 3.01b

3. (a) The hypotheses are H0 : Oxygen consumption is the same at all tempos versus Ha : At least one
pair of µi’s are different. Test with α = 0.05. Using Formula 8.5,

SSError =

4∑
i=1

(ni − 1)s2i = 11 · (3.2)2 + 11 · (3.4)2 + 11 · (3.0)2 + 11 · (3.1)2 = 444.51.

Using Formula 8.4,

SSTempos =
∑ T 2

i.

ni
− T 2

..

N
= 137.40.

Source of variation Sum of squares df MS F c.v.

Tempos 137.40 3 45.800 4.53 2.79

Error 444.51 44 10.103

Total 581.91 47

Since 4.53 > 2.79, rejectH0. At least some of the tempos have different oxygen consumptions.

(b) Method 1: Use Bonferroni t tests with α = 0.05 to compare the means. The ordered means
are

Punches/min 60 80 100 120

Xi 25.2 28.0 28.3 29.9
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Since all the sample sizes are equal, the denominator in the expression for the Bonferroni t
is the same for all tests,√

MSError

(
1

ni
+

1

nj

)
=

√
10.103

(
1

12
+

1

12

)
= 1.298.

There are
(
4
2

)
= 6 comparisons to make. From Table C.4 the critical t value for α

6 = 0.0083 with
ν = N − k = 48− 4 = 44 degrees of freedom is 2.763.

First compare the 120 and 60 tempos. From Formula E.1, the test statistic is

Bonferroni t =
X120 −X60√

MSError

(
1

n120
+ 1

n60

) =
29.9− 25.2

1.298
= 3.621 > 2.763.

Reject H0, the mean oxygen consumptions are different for the 120 and 60 punch tempos.
The other comparisons are carried out in a similar fashion leading to the following results.

Comparison t statistic c.v. Conclusion

120 to 60 3.621 2.763 Reject H0

120 to 80 1.464 2.763 Accept H0

120 to 100 1.233 2.763 Accept H0

100 to 60 2.388 2.763 Accept H0

100 to 80 0.231 2.763 Accept H0

80 to 60 2.157 2.763 Accept H0

The 60 punch tempo is significantly lower in oxygen consumption compared to the other
tempos. There are no other differences at α = 0.05 significance level.

25.2a 28.0ab 28.3ab 29.9b.

Method 2: Use DMRT to compare the (ordered) means.

Punches/min 60 80 100 120

Xi 25.2 28.0 28.3 29.9

Since all the sample sizes are equal, to calculate SSRp, use√
MSError

n
=

√
10.103

12
= 0.918.

Use Formula E.3 with α = 0.05 and ν = N − k = 44 to calculate SSRp in the table below.

Number of means

2 3 4

rp 2.858 3.006 3.102

SSRp = rp

√
MSError

n
2.624 2.760 2.848

Look at the differences in the means and compare to the appropriate SSRp. The 60 punch
tempo is significantly lower in oxygen consumption compared to the other tempos. There are no
other differences at α = 0.05 significance level.

25.2a 28.0b 28.3b 29.9b.
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4. The hypotheses are H0: µ1 = µ2 = µ3 versus Ha: At least one pair of µi’s is different. The summary
data and ANOVA table are given below.

First year Sophomore Junior

Xi. 114.8 116.0 87.2

ni 9 5 6

N = 20,
∑
i

∑
j

Xij = 2136,
∑
i

∑
j

X2
ij = 234, 852

Source of variation Sum of squares df MS F c.v.

Years 3308.8 2 1654.41 8.23 3.59

Error 3418.4 17 201.08

Total 6727.2 19

Since 8.23 > 3.59, reject H0. There are significant differences in the final exam grades by year.
Use Bonferroni t tests to separate means.

There are
(
3
2

)
= 3 comparisons to make and α

3 = 0.016. First compare sophomores and juniors.

Bonferroni t =
XS −XJ√

MSError

(
1
nS

+ 1
nJ

) =
116.0− 87.2√
201.08

(
1
5 + 1

6

) = 3.354.

The other test statistic calculations are similar. The following table summarizes the results. Using
Table C.4 with ν = 17 we find:

Sophomore – Junior Sophomore – First Year First year – Junior

Bonferroni t 3.354 0.152 3.692
P value < 0.005 > 0.20 < 0.005

The first year and sophomore means are not different, but both of these means differ significantly
from the juniors in final exam means.

Jr FY So

87.2a 114.8b 116.0b

5. Begin by calculating the ANOVA table and global F test to see if there are any significant differences
among the groups The hypotheses are

H0: µI = µII = µIII

Ha: At least one pair of the µi’s is not equal.

Test with α = 0.05. Since niXi = Ti., we have the additional summary statistics:

I II III

ni 15 15 15

Ti. 600 300 1800
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Further,
∑
i ni = 45 and

∑
i Ti. = T.. = 2700. Next we need the three sums of squares: SSTotal,

SSTreat, and SSError. From Formula 8.4,

SSTreat = SSGroups =
∑
i

[
T 2
i.

ni

]
− T 2

..

N

=

[
(600)2

15
+

(300)2

15
+

(1800)2

15

]
− (2700)2

45

= 246, 000− 162, 000

= 84, 000.

From Formula 8.5, we can calculate SSError:

SSError =
∑
i

(ni − 1)s2i =
∑
i

CSSi = 1400 + 1120 + 1890 = 4410.

Source of variation Sum of squares df MS F c.v.

Groups 84,000 2 42,000 400 2.92
Error 4,410 42 105

Total 88,410 44

Using Table C.7 since 400 � 3.23, we reject H0 and conclude that the groups are significantly
different. We use SNK mean separation. The means are rank-ordered from smallest to largest:

II I III
20 40 120

From Table C.9 with α = 0.05 and ν = N − k = 42, we obtain

k 2 3

q c.v. 2.858 3.442

Comparison q statistic k c.v. Conclusion

II to III 37.796 3 3.442 Reject H0

II to I 30.237 2 2.858 Reject H0

I to III 7.559 2 2.858 Reject H0

All treatments produce differing weight gains.

II I III
20a 40b 120c
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6. The hypotheses are H0: µ1 = µ2 = µ3 = µ4 There are no differences in mean cortex weights in rats
on the various diets versus Ha: At least one pair of µi’s (mean cortex weights) is different. The
summary data and ANOVA table are given below.

Groups Count Sum Mean Variance

Diet I 5 3350 670.0 187.50
Diet II 5 3425 685.0 250.00

Diet III 5 3540 708.0 182.50

Diet IV 5 3395 679.0 217.50

Total 20 13,710

Source of variation Sum of squares df MS F c.v.

Diets 3945 3 1315.000 6.28 3.24

Error 3350 16 209.375

Total 7295 19

Since 6.28 > 3.24, reject H0. There are significant differences in the mean cortex weights of rats
on at least two of the diets. Use Bonferroni t tests to separate means with ν = N − k = 20− 4 = 16
and α = 0.05

6 = 0.0083.
First compare diets III and I. From Formula E.1, the test statistic is

Bonferroni t =
XIII −XI√

MSError

(
1
nIII

+ 1
nI

) =
708.0− 670.0√
209.375

(
1
5 + 1

5

) = 4.152.

The other calculations are similar and are listed below.

III− I III− IV III− II II− I II− IV IV− I

Bonferroni t 4.152 3.169 2.513 1.639 0.656 0.983
P value < 0.005 < 0.0083 > 0.02 > 0.10 > 0.20 > 0.20

Conclusion Reject H0 Reject H0 Accept H0 Accept H0 Accept H0 Accept H0

The differences in the means are summarized below.

I IV II III
670.0a 679.0a 685.0a,b 708.0b



F

Two-Factor Analysis

This material follows naturally as Section 9.5 in the text An Introduction to Biostatistics by
Glover and Mitchell (Waveland, 2015). It cross-references that text and follows the same format.

F.1 The Durbin Test: Balanced Incomplete Blocks

Introduction

When the number k of treatments is large, it can be impractical to apply all treatments to each
block. For example, if 15 soft drinks were going to be compared, any judge would find it very
difficult to rank all 15 accurately. However, if each judge were to taste only 2 or 3 soft drinks,
reliable rankings could be obtained. Those experimental designs in which not all treatments
are applied to each block are called incomplete block designs.

EXAMPLE F.1. Apple scab disease, caused by the fungus Venturia inaequalis, is an important
pathogen of commercial apples. The fungus causes lesions on both the fruit and the leaves
of apple trees. The lesions, which are usually circular, rough-surfaced, olive-green spots, can
greatly reduce the marketability of fresh apples. Apple scab is typically prevented by applying
fungicides at regular intervals throughout the Spring. To test the efficacy of various formulations
of a relatively new class of fungicides called strobilurins, 6 different concentrations were tested on
10 plots, with 3 different concentrations applied to different sections of each plot. The number
of apple scab lesions per 1000 apples in each section of the plot were recorded and are presented
in the following table.

Fungicide

Block A B C D E F

1 3 17 12
2 15 7 18

3 6 27 14

4 11 24 18
5 5 12 20

6 19 23 13

7 15 21 6
8 23 7 12

9 24 14 8
10 3 26 21

The design of the experiment above was arranged so that every block (plot) received three
levels of treatment. Every treatment appeared in 5 different blocks and every treatment ap-
peared with every other treatment twice.

An experimental design with the general features of the one above is called a balanced
incomplete block design. Analysis is done using the Durbin test, which is very similar to
the Friedman test.
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Notation

The following notation and properties summarize the Durbin test design.

• t denotes the total number of treatments to be examined.

• k denotes the block size (k < t).

• b denotes the total number of blocks.

• r denotes the number of times each treatment appears (r < b).

• Each pair of treatments occurs in the same number of blocks ensuring the same number
of “head-to-head” comparisons.

The data are arrayed in a balanced incomplete design as in Example F.1. Xij represents
the result of treatment j in the i-th block (if it appears there). Rank the Xij within each block
from smallest to largest (from 1 to k). Let Rj denote the sum of the r ranks associated with
the j-th treatment.

Assumptions

There are two assumptions for the Durbin test.

1. The blocks are independent of each other.

2. Within each block, the observations may be arranged in increasing order. (With the use
of midranks, a small number of ties is tolerable.)

Hypotheses

The hypotheses are identical to those for the Friedman test.

• H0: “The treatments have identical effects” versus Ha: “At least one of the treatments
tends to yield larger effects than at least one other.”

Test Statistic and Decision Rule

If the null hypothesis is true, then all treatments should produce nearly equal rank sums Rj .

Since there are k ranks per block, the mean rank is (k+1)
2 . Since each treatment is ranked r

times, the mean rank sum is r(k+1)
2 . So if the null hypothesis holds, then all the rank sums Rj

should be close to this mean sum. The test statistic is based on the difference between this
mean and the various Rj . The Durbin test statistic is defined as

T =
12(t− 1)

rt(k2 − 1)

t∑
j=1

(
Rj −

r(k + 1)

2

)2

.

This may be written in the following form for easier hand computation.

T =
12(t− 1)

rt(k2 − 1)

t∑
j=1

R2
j −

3r(t+ 1)(k + 1)

k − 1
.
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Since the test statistic will be close to 0 if all Rj are close to the mean rank sum, H0 is
accepted when T is small and rejected when T is sufficiently large. The distribution of T is
reasonably well-approximated by the chi-square distribution with t− 1 degrees of freedom. So
the critical values for the test can be found in Table C.5. If the test is done at the α level of
significance, then H0 should be rejected when T exceeds the value in the Table C.5 for the 1−α
quantile.

SOLUTION TO EXAMPLE F.1. Carry out the test at the α = 0.05 level. In the example,
t = 6 is the total number of treatments, k = 3 is the block size, b = 10 is the total number of
blocks, and r = 5 is the number of times each treatment appears. Notice that every treatment
is compared with every other variety exactly twice. Thus, this is a balanced incomplete block
design and the Durbin test may be used. First the data are ranked and the treatment rank sums
are calculated.

Fungicide

Block A B C D E F

1 1 3 2

2 1 3 2
3 1 3 2

4 1 3 2

5 1 2 3
6 2 3 1

7 2 3 1

8 3 1 2
9 3 2 1

10 3 2 1

Rj 5 13 14 12 7 9

The mean rank is r(k+1)
2 = 5(3+1)

2 = 10. So the test statistic is

T =
12(t− 1)

rt(k2 − 1)

t∑
j=1

(
Rj −

r(k + 1)

2

)2

=
12(6− 1)

5(6)(32 − 1)
[(5− 10)2 + (13− 10)2 + (14− 10)2 + (12− 10)2 + (7− 10)2 + (9− 10)2]

= 16.0.

From Table C.5, the critical value for a test at the α = 0.05 level with df = t− 1 = 6− 1 = 5 is
11.1. Since T > 11.1, H0 is rejected. At least one fungicide has a different effect on apple scab
disease.

Paired Comparisons

Paired comparisons for the Durbin test can be carried out when H0 has been rejected. The
set up is exactly the same as for the Friedman test. (You may wish to review the material in
Chapter 9.3 on Friedman paired comparisons and selection of significance levels α′ and α.) The
hypotheses are:

• H0: “The effects of the i-th and j-th treatments are the same” versus Ha: “The effects
of the i-th and j-th treatments are different.”
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The comparisons are carried out using the rank sum differences, |Ri − Rj |. The test statistic
for a two-tailed comparison of the i-th and j-th treatments is

zij =
|Ri −Rj |√
rt(k2−1)
6(t−1)

.

H0 is rejected if zij ≥ z1−α, or more simply if

|Ri −Rj | ≥ z1−α

√
rt(k2 − 1)

6(t− 1)
.

If there are t treatments, then there will be a total of
(
t
2

)
paired comparisons.

EXAMPLE F.2. Carry out a set of paired comparisons for the data in Example F.1.

SOLUTION. The hypotheses are H0: “The i-th and j-th fungicides have the same effect on
apple scab disease” versus Ha: “The i-th and j-th fungicides differ in their effects on apple scab
disease.” If the test is done at the α′ = 0.05 level, then the individual comparisons are made at
the α = 0.05

(6
2)

= 0.05
15 = 0.0033 level. Thus, 1− α = 0.9967 and z0.9967 = 2.72. H0 is rejected only

if

|Ri −Rj | ≥ z1−α

√
rt(k2 − 1)

6(t− 1)
= 2.72

√
5 · 6 · 8

6 · 5
= 7.69.

Fungicide A differs from (is more effective) than fungicides B and C since only these rank sums
differ by at least 7.69.

Incomplete Block Design Project: Ice Cream Taste Test

As a fitting conclusion to this section, apply your knowledge of statistics to plan, carry out,
and analyze the results of an ice cream or soft drink tasting for your class using an incomplete
block design.

Design Restrictions

Incomplete block designs are a bit complicated to create.

• The number of blocks, b, is the number of people participating in the tasting.

• The total number of flavors to be compared in the tasting is t.

• Every person should taste the same number of flavors, k.

• Every flavor should be tasted by the same number of people, r.

• Each pair of flavors should appear in the same number of blocks. This ensures that every
flavor appears in the same number of “head-to-head” tastings with every other flavor.

These conditions constrain the values of b, k, t, and r. Since there are b people each tasting k
flavors, there are a total of bk individual tastings. On the other hand, since there are t flavors
and each is tasted r times, then there are tr tastings. So bk must equal tr in the design layout
that you propose.
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Next we show that the final condition in the list above implies that the quantity r(k − 1)
must be divisible by t− 1. There are

(
t
2

)
different head-to-head pairs. Let s denote the number

of times each pair occurs in the design, making a total of s
(
t
2

)
pairs. But there are

(
k
2

)
such

pairs in each of the b blocks. So

s

(
t

2

)
= b

(
k

2

)
⇒ st(t− 1)

2
=
bk(k − 1)

2
.

Multiplying by 2 and using the fact that bk = rt, it follows that

st(t− 1) = rt(k − 1)⇒ s(t− 1) = r(k − 1).

Therefore t− 1 divides r(k − 1).

EXAMPLE F.3. Suppose that there were b = 30 tasters and t = 10 flavors to taste. Find values
of k and r that satisfy the conditions of a balanced incomplete block design.

SOLUTION. We must have 30k = 10r or 3k = r. Thus, a possible solution would be k = 4 and
r = 12 since 30× 4 = 10× 12 and 12× (4− 1) = 36 is divisible by 10− 1 = 9. You would then
have to produce a layout that fit the design.

EXAMPLE F.4. Suppose that there were b = 15 tasters and t = 6 flavors to taste. Find values
of k and r that satisfy the conditions of a balanced incomplete block design.

SOLUTION. This time 15k = 6r or 5k = 2r. Thus, a possible solution is k = 2 and r = 5
because 15× 2 = 6× 5 and 5× (2− 1) = 5 is divisible by 6− 1 = 5. Another possible solution
might be k = 4 and r = 10 because 15×4 = 6×10 and 10× (4−1) = 30 is divisible by 6−1 = 5.
In each case you’d then have to find a layout to fit the design parameters.

The Assignment

Your task is to provide the entire design layout for the tasting following these guidelines.

1. You must specify the values of b, k, t, and r

2. You must provide the pattern for the layout for the test. Make sure that your design
fulfills the requirements of a balanced incomplete block design. Note that a basic layout
can be “repeated.” For example, if your design calls for 10 blocks and there are 30 people,
each block would be repeated three times.

3. You must specify the type or flavor, that is, only chocolate (use various brands), only
“lite,” or only flavors of a specific brand. The more specific you are, the better.

4. Carefully state the null and alternative hypotheses of your proposed test.

5. Select a significance level for a Durbin test and determine the corresponding critical value
for your incomplete block design.

6. Similarly, select a significance level α′ for the paired comparisons that may be required
for your design. Determine the corresponding significance level α and find the difference
in ranks necessary for there to be a significant difference between two flavors.

An additional factor that you should take into account is that it is probably not possible for one
to accurately rank very many flavors. So make k relatively small. This also makes producing
the layout easier.
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F.2 Problems

1. Seven different brands of breakfast bars were taste-tested by 7 subjects. Each person was asked
to taste and rank 4 of the 7 bars (with a rank of 1 assigned to the preferred brand). A balanced
incomplete block design was created and the following data were collected. Do the results indicate
a significant difference in taste?

Person A B C D E F G

1 3 1 4 2

2 1 3 4 2
3 2 1 3 4

4 1 2 4 3

5 1 4 3 2
6 2 4 1 3

7 1 2 3 4

2. (a) Forty consumers were asked to rate five brands of coffee. Each consumer tasted exactly two
brands (with a rank of 1 assigned to the preferred brand). A balanced incomplete block design
was arranged where t = 5, k = 2, b = 40, and r = 16. The resulting rank sums were R1 = 25,
R2 = 18, R3 = 21, R4 = 29, and R5 = 27. Was there a significant difference in the preferences
of the consumers?

(b) If appropriate, carry out a set of paired comparisons for these data. Interpret the results.

3. A physician is interested in comparing the effects of six different allergens in persons extremely
sensitive to a ragweed skin allergy test. Ten patients received an injection of an antihistamine.
Subsequently, the allergens were applied topically in different sections of the left arm. The areas (in
mm2) of redness, measured after two days, are reported in the table below.

Person A B C D E F

1 41 25 40
2 42 46 37

3 37 45 33

4 46 35 34
5 31 34 42

6 56 36 65

7 42 67 33

8 37 39 49

9 40 59 55
10 36 57 34

(a) Verify that this is an incomplete block design. Determine the values of t, k, b, and r.

(b) Is there a significant difference among the patients’ responses to the allergens? Carry out a
Durbin test at the α = 0.05 level.

(c) Carry out the full set of paired comparisons if appropriate.

4. Students on a term abroad program in Australia designed and carried out and analyzed the results
of a beer tasting using an incomplete block design. Five Australian bitter beers were compared. The
raw data from their test appears on the next page. Do an analysis using all appropriate tests. Make
sure to state all hypotheses and significance levels. Interpret the results.
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Block Castlemaine Victoria Foster’s Special Powers Toohey’s Red

1 2 3 1
2 1 3 2
3 2 3 1
4 3 2 1

5 3 2 1
6 3 1 2
7 1 2 3

8 1 3 2
9 1 3 2
10 3 1 2

11 1 3 2
12 3 2 1
13 1 3 2
14 2 3 1

15 1 2.5 2.5
16 1 2 3
17 1 2 3
18 1 3 2

19 3 1 2
20 1 2 3
21 3 2 1

22 3 1 2
23 2 3 1
24 3 1 2

25 1 3 2
26 3 1 2
27 1 3 2
28 2.5 1 2.5

29 2 1 3
30 2 1 3
31 2 1 3

32 3 2 1
33 3 2 1
34 2 3 1

35 1 3 2
36 3 1 2
37 1 2 3

38 1 2 3
39 1 3 2

40 3 1 2
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5. Provide the layout for an incomplete block design with b = 15 blocks, t = 6 treatments, k = 2, and
r = 5.

6. (a) Is the following an incomplete block design layout? If so, give the values of the parameters b, t,
r, and k and also the number of times each comparison occurs. Otherwise, explain why it is not.

A B C D E F G H I J K

1 x x x x x

2 x x x x x
3 x x x x x

4 x x x x x

5 x x x x x
6 x x x x x

7 x x x x x

8 x x x x x
9 x x x x x

10 x x x x x

(b) Is the following an incomplete block design layout? If so, give the values of the parameters b, t,
r, and k and also the number of times each comparison occurs. Otherwise, explain why it is not.

A B C D E F

x x x

2 x x x

3 x x x
4 x x x

5 x x x
6 x x x

(c) Fill in entries in the two rows to make this an incomplete block design. Hint: Begin by deter-
mining r.

A B C D E F

1 x x x

2 x x x

3 x x x
4 x x x

5 x x x
6
7

8 x x x

9 x x x

10 x x x

7. (a) Show that kb = rt in any balanced incomplete block design. Hint: Count the number of obser-
vations in two different ways.

(b) If we allowed r = b and k = t, show that the Durbin test statistic would be exactly the same as
the Friedman test statistic.

(c) Suppose that 16 consumers are to rate five brands of ice cream. Each consumer is given three
flavors to rate. Is a balanced incomplete block design possible? Explain.
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8. To evaluate the antibacterial benefits of a multicare dentifrice relative to other selected oral hy-
giene regimens, the following balanced incomplete block design study was conducted. Forty healthy
subjects each tested 3 of 5 possible regimens (brushing with (A) distilled water or brushing with
(B) regular, (C) baking soda, (D) tartar control, or (E) multicare toothpastes. Treatments were
administered with a one week washout period between them. Subjects brushed for 60 seconds with
a dentifrice dose sufficient to cover the head of a standard toothbrush. After brushing, subjects
expectorated the dentifrice and rinsed for 10 seconds with 10 ml of water. Microbial samples were
taken from the gingival margin of both the facial and lingual surfaces of the lower dentition using a
swab prior to and immediately following brushing. Swab samples were evaluated for total facultative
anaerobic bacteria. The results reported below give the decrease, (before− after) in log cfu/ml (log
colony forming units per ml) for each regimen. Analyze these data and determine whether there are
any significant differences among the treatments and, if so, determine which treatments are different.

Person A B C D E

1 67 49 65

2 51 41 79
3 74 78 63

4 86 73 69

5 31 40 54
6 72 46 20

7 69 64 78

8 56 76 55
9 69 56 88

10 53 68 87

11 33 82 88
12 63 79 122

13 75 61 58
14 49 66 85

15 74 51 49

16 50 80 82
17 48 47 106

18 59 68 99

19 38 40 105
20 61 69 86

21 56 68 87

22 41 69 105
23 44 57 54

24 66 84 69

25 79 68 54

26 57 76 37

27 73 58 49
28 64 35 55

29 78 61 67

30 61 58 59
31 68 67 70
32 54 59 108
33 50 53 113
34 80 48 86

35 59 79 91

36 67 58 73
37 68 72 69
38 70 58 111
39 77 41 65
40 38 63 145
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F.3 Answers

1. Here t = 7, k = 4, b = 7, and r = 4. H0: “All seven bars taste the same” versus Ha: “At least one
of the bars tastes different than the others.” Let α = 0.05. Since df = t − 1 = 6, the c.v. = 12.6.
The ranks sums are:

A B C D E F G

6 5 15 9 10 15 10

The expected rank sum is r(k+1)
2 = 4(4+1)

2 = 10,

T =
12(t− 1)

rt(k2 − 1)

t∑
j=1

(
Rj −

r(k + 1)

2

)2

=
12(7− 1)

4(7)(42 − 1)
[(6− 10)2 + (5− 10)2 + (15− 10)2 + (10− 10)2 + (15− 10)2 + (10− 10)2]

= 15.77.

Since T > 12.6, reject H0. There is evidence of a significant taste difference among the bars.
Carry out paired comparisons. The hypotheses are H0: “The ith and jth brands taste the same”

versus Ha: “The ith and jth brands taste different.” If the test is done at the α′ = 0.05 level, then
the individual comparisons are made at the α = 0.05

(7
2)

= 0.05
21 = 0.0024 level. Thus, 1 − α = 0.9976

and z0.9976 = 2.82. H0 is rejected only if

|Ri −Rj | ≥ z1−α

√
rt(k2 − 1)

6(t− 1)
= 2.82

√
4 · 7 · 15

6 · 6
= 9.63.

Brand B was judged significantly different (better) in taste than either brands C or F.
If the test were done at the α′ = 0.10 level, then the individual comparisons are made at the

α = 0.05

(7
2)

= 0.10
21 = 0.0048 level and z0.9952 = 2.60. H0 is rejected only if

|Ri −Rj | ≥ 2.60

√
4 · 7 · 15

6 · 6
= 8.88.

Under these less restrictive conditions, Brands A and B would be judged significantly different
(better) in taste from either brands C or F.

2. (a) The Durbin test statistic is

T =
12(t− 1)

rt(k2 − 1)

t∑
j=1

(
Rj −

r(k + 1)

2

)2

=
12(5− 1)

16(5)(22 − 1)
[(25− 24)2 + (18− 24)2 + (21− 24)2 + (29− 24)2 + (27− 24)2]

= 14.2.

From Table C.5, the critical value for a test at the α = 0.05 level with df = t− 1 = 5− 1 = 4 is
9.49. Since T > 9.49, H0 is rejected. At least one brand of coffee tastes different from that of
another.

(b) Carry out paired comparisons. The hypotheses are H0: “The ith and jth brands taste the
same” versus Ha: “The ith and jth brands taste different.” If the test is done at the α′ = 0.05
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level, then the individual comparisons are made at the α = 0.05

(5
2)

= 0.05
10 = 0.005 level. Thus,

1− α = 0.995 and z0.995 = 2.58. H0 is rejected only if

|Ri −Rj | ≥ z1−α

√
rt(k2 − 1)

6(t− 1)
= 2.58

√
16 · 5 · 3

6 · 4
= 8.16.

Brand 2 was judged significantly different (better) in taste than either brands 4 or 5.

3. (a) Here t = 6, k = 3, b = 10, and r = 5.

(b) The ranks and their sums are given in the table that follows.

Person A B C D E F

1 3 1 2

2 2 3 1

3 2 3 1
4 3 2 1

5 1 2 3

6 2 1 3
7 2 3 1

8 1 2 3

9 1 3 2
10 2 3 1

Sum 11 9 14 7 6 13

Test H0: “All six allergens have the same effect” versus Ha: “At least one of the allergens
elicits a different response.” Let α = 0.05. Since t = 6, df = 5, and the c.v. = 11.1.

T =
12(t− 1)

rt(k2 − 1)

t∑
j=1

(
Rj −

r(k + 1)

2

)2

=
12(6− 1)

5(6)(32 − 1)
[(11− 10)2 + (9− 10)2 + (14− 10)2 + (7− 10)2 + (6− 10)2 + (13− 10)2]

= 13.0.

Since T > 11.1, H0 is rejected. The response associated with at least one allergen differs from
that of another.

(c) Carry out paired comparisons. The hypotheses are H0: “The response associated with the ith
and jth allergens is the same” versus Ha: “The response associated with the ith and jth allergens
is different.” If the test is done at the α′ = 0.05 level, then the individual comparisons are made
at the α = 0.05

(6
2)

= 0.05
15 = 0.0033 level. Thus, 1 − α = 0.9967 and z0.9967 = 2.72. H0 is rejected

only if

|Ri −Rj | ≥ z1−α

√
rt(k2 − 1)

6(t− 1)
= 2.72

√
5 · 6 · 8

6 · 5
= 7.69.

Only the responses to allergens C and E can be judged significantly different.

4. Here t = 5, k = 3, b = 40, and r = 24. H0: “All five beers taste the same” versus Ha: “At least one
of the beers tastes different than the others.” Let α = 0.05. Since t = 5, df = 4, and the c.v. = 9.49.
The ranks sums are:

Castlemaine Victoria Foster’s Special Powers Toohey’s Red

52 44.5 53.5 40 50
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The expected rank sum is r(k+1)
2 = 24(3+1)

2 = 48,

T =
12(5− 1)

24(5)(32 − 1)
[(52− 48)2 + (44.5− 48)2 + (53.5− 48)2 + (40− 48)2 + (50− 48)2]

=
16 + 12.25 + 30.25 + 64 + 4

20
= 6.325.

Since T < 9.49, accept H0. There is no evidence of a taste difference among the beers.

5. Each possible pair occurs once.

Block A B C D E F

1 x x
2 x x

3 x x
4 x x

5 x x

6 x x
7 x x

8 x x

9 x x
10 x x

11 x x

12 x x
13 x x

14 x x

15 x x

6. (a) Yes, b = t = 11 and k = r = 5. Each comparison occurs twice.

(b) No, because the comparison (A,B) occurs twice, but the comparison (A,C) occurs only once.

(c) Since k = 3 and two rows are missing, we must add a total of 6 x’s to the layout, 3 in each row.
Notice that one column (A) has 3 entries, while four columns (C, D, E, and F) have 4 entries,
and one column (B) has 5. Since all columns must have the same number of entries r, we see
that r must be at least 5 (from B) and at most 5 (because at most 2 x’s can be added to column
A). So r = 5. Add the 2 x’s to column A. Notice that the pair (A,C) occurs only in row 7,
while the pair (A,B) occurs in rows 9 and 10. So every pair must occur at least twice. If we put
an x in row 6, column C, then we must also put an x in row 6, column F to obtain the second
(C,F)-pair. Now row 6 has its 3 entries. Row 7 is completed by noting that we still need entries
in columns D and E. So the final two rows (in either order) are:

A B C D E F

6 x x x

7 x x x

7. (a) Since there are b people each tasting k flavors, there are a total of bk individual tastings. On the
other hand, since there are t flavors and each is tasted r times, then there are tr tastings. So bk
must equal tr in a balanced incomplete block design.
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(b) If r = b and k = t, then

TDurbin =
12(t− 1)

rt(k2 − 1)

t∑
j=1

(
Rj −

r(k + 1)

2

)2

=
12(k − 1)

bk(k2 − 1)

k∑
j=1

(
Rj −

b(k + 1)

2

)2

=
12(k − 1)

bk(k − 1)(k + 1)

k∑
j=1

(
Rj −

b(k + 1)

2

)2

=
12

bk(k + 1)

k∑
j=1

[
Rj −

b(k + 1)

2

]2
= TFriedman.

(c) No. Here t = 5, k = 3, b = 16, and r is unknown. But rt = bk, so 5r = 16 · 3 = 48 which implies
that r = 48

5 = 9.6. But r is supposed to be an integer.

8. Here t = 5, k = 3, b = 40, and r = 24. H0: “All treatments have the same effect” versus Ha: “At
least one treatment is different than the others.” Let α = 0.05. Since df = t− 1 = 4, the c.v. = 9.49.
(The ranks and their sums are given in the table at the end of this answer.)

The expected rank sum is r(k+1)
2 = 24(3+1)

2 = 48,

T =
12(t− 1)

rt(k2 − 1)

t∑
j=1

(
Rj −

r(k + 1)

2

)2

=
12(5− 1)

24(5)(32 − 1)
[(41− 48)2 + (46− 48)2 + (43− 48)2 + (44− 48)2 + (66− 48)2]

= 20.9.

Since T > 9.49, reject H0. There is evidence of a significant differences among the treatments.

Carry out paired comparisons. The hypotheses are H0: “The ith and jth treatments have the
same effect” versus Ha: “The ith and jth treatments have different effects.” If the test is done at
the α′ = 0.05 level, then the individual comparisons are made at the α = 0.05

(5
2)

= 0.05
10 = 0.005 level.

Thus, 1− α = 0.995 and z0.995 = 2.58. H0 is rejected only if

|Ri −Rj | ≥ z1−α

√
rt(k2 − 1)

6(t− 1)
= 2.58

√
24 · 5 · 8

6 · 4
= 16.3.

Toothpaste E was judged significantly different (better) than all others.
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Person A B C D E

1 3 1 2

2 2 1 3
3 3 1 2

4 3 2 1

5 1 2 3
6 3 2 1

7 2 1 3

8 2 3 1
9 2 1 3

10 1 2 3

11 1 2 3
12 1 2 3

13 3 2 1

14 1 2 3

15 3 2 1

16 1 2 3
17 2 1 3

18 1 2 3

19 1 2 3
20 1 2 3

21 1 2 3

22 1 2 3
23 1 3 2

24 1 3 2

25 3 2 1
26 2 3 1

27 3 2 1
28 3 1 2

29 3 1 2

30 3 1 2
31 2 1 3

32 1 2 3

33 1 2 3
34 2 1 3

35 1 2 3

36 2 1 3
37 1 3 2

38 2 1 3

39 3 1 2

40 1 2 3

Sum 41 46 43 44 66



G

Sampling Distributions

G.1 Confidence Intervals for a Population Proportion

Confidence intervals for many other parametric statistics can be developed if the sampling
distribution is known or can be reasonably approximated. Let’s consider now the confidence
interval for p, the population proportion in a binomial distribution.

As we saw in Chapter 1 many statistical studies involve counts (categorical data) rather
than measurement data. Among the most common are opinion polls and surveys.

EXAMPLE G.1. A local epidemiologist wishes to determine the rate of breast cancer in women
under age 35 in a rural county in Ireland. She surveys a random sample of 1200 women in this
age group and determines that exactly 6 have had this form of cancer sometime during their
lifetime. She wishes to use this information to estimate the population rate p of breast cancer
and determine a confidence interval for this estimate.

We will present two solutions to this question. The first solution makes use of material we
developed regarding the binomial distribution in Chapter 3. You will find this method has been
used in many studies in the scientific literature.

Method 1

If X is the number of “successes” in a sample of size n, then a simple way to estimate the
population proportion is to use the sample proportion

p̂ =
X

n
.

This symbol is read as “p hat.” In the epidemiologist’s case

p̂ =
X

n
=

6

1200
= 0.005.

She now has an estimate of the population rate of breast cancer and needs a way of expressing
her confidence in this value.

From Section 3.2, a binomial distribution has an approximately normal distribution with
mean p and population variance σ2 = p(1 − p) if np > 5 and n(1 − p) > 5. The sample
proportion, p̂, is an unbiased estimator of p, the population parameter.

Since p̂ is a sample mean, then by the Central Limit Theorem (Theorem 4.1) the variance
of p̂ is

σ2
p̂ =

σ2

n
=
p(1− p)

n
.

and its standard error is

SEp̂ = σp̂ =

√
p(1− p)

n
. (G.1)
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We have a point estimate p̂ for p and its standard error and we know that the sampling
distribution is approximately normal (at least for large n). So using (4.3), the end points of a
(1− α)100% confidence interval for p should be

L1 = p̂− z1−α
2

√
p(1− p)

n

and

L2 = p̂+ z1−α
2

√
p(1− p)

n
,

where z1−α
2

is the confidence factor (z value) corresponding to 1− α
2 . For example, for a

(1 − α)100% = 95% confidence interval, α = 0.05 and the corresponding z value is z1−0.025 =
z0.975 = 1.960.

Notice that there is a problem here. These limits include the population parameter p, which
we are trying to determine. If we actually knew p, then we wouldn’t need any confidence limits!
To overcome this paradox, we estimate p by using p̂ in the formula for SE. Then

L1 = p̂− z1−α
2

√
p̂(1− p̂)

n

and

L2 = p̂+ z1−α
2

√
p̂(1− p̂)

n
.

Because the standard error is estimated from the sample, we should also change the z values
(±z1−α

2
) to appropriate t values. However, earlier we assumed that sample size n was large.

If we assume that n > 30, then the t distribution is very nearly equal to the standard normal
distribution, so t and z values will be very close. (As df goes to infinity, the t distribution
approaches the z distribution.) Thus,

FORMULA G.1. A good approximation for the (1−α)100% confidence limits of a population proportion
when np̂ > 5 and n(1− p̂) > 5 is given by

L1 = p̂− z1−α2

√
p̂(1− p̂)

n
and L2 = p̂+ z1−α2

√
p̂(1− p̂)

n
.

SOLUTION TO EXAMPLE G.1. Since n = 1200 and p̂ = 0.005, then

np̂ = 1200× 0.005 = 6 > 5

and
n(1− p̂) = 1200× 0.995 = 1194 > 5.

The approximation in Formula G.1 will be appropriate here. The 95% confidence limits are

L1 = 0.005− 1.960

√
(0.005)(0.995)

1200
= 0.005− 0.00399 = 0.00101

and

L2 = 0.005 + 1.960

√
(0.005)(0.995)

1200
= 0.005 + 0.00399 = 0.00899.

The 95% confidence interval for p, the proportion of Irish women under age 35 who have expe-
rienced breast cancer, is 0.00101 to 0.00899.

We can say that we are 95% confident that the true proportion p is between 0.00101 and
0.00899 or, as these statistics are often stated, between 101 and 899 per 100, 000. Remember
that we interpret this as meaning that with repeated samples of size 1200 about 95% of the
intervals constructed as above would include the true population proportion p.
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Method 2 (Optional)

The method used to construct the confidence interval for Example G.1 required that the sample
size be relatively large. What happens when np(1− p) ≤ 5, as in the case when n is small and
p is either very close to 0 as in Example G.1 or very large (close to 1)?

In the 1990’s with the use of computer simulations, it was shown that confidence intervals
based on the method above can be inaccurate, even for large samples. Figure G.1 illustrates
how problematic Method 1 can be. For comparison puposes, the horizontal dashed line (- -
-) represents the desired 0.95 confidence level. For each proportion p between 0.01 to 0.99
one-thousand samples of size 100 were drawn. Next, 95% confidence intervals were computed
in two ways. The solid graph (——) represents the proportion of time the true value of p
was contained in the confidence interval using Method 1 with p̂. In general the true level of
confidence is somewhat less than 95% for most values of p. In particular, when p ≤ 0.05 or
p ≥ 0.95, the confidence interval computed from the sample contained the true population
proportion p less than 85% of the time.

On the other hand, dotted graph (· · · · · · ) represents the proportion of time the true value
of p was contained in the confidence interval using Method 2 which will be described below.
For nearly all values of p, especially large and small, the confidence intervals contained the true
population proportion p more than 95% of the time. That is, the method is conservative and
slightly understates the true level of confidence.
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FIGURE G.1. For each proportion p between 0.01 to 0.99 one-thousand samples
of size 100 were drawn and 95% confidence intervals were computed in two
ways. The horizontal dashed line (- - -) represents the desired 95% confidence
level. The solid graph (——) represents the proportion of time the true value
of p was contained in the confidence interval using p̂ while the dotted graph
(· · · · · · ) represents the proportion of time the true value of p was contained in
the confidence interval using p̃.

To begin Method 2, we adjust the estimate for the population proportion. The Wilson
estimate of the population proportion is

p̃ =
X + 2

n+ 4
,

where X is the number of “successes” in a sample of size n. This is read as “p tilde.” It is



SECTION G.1: Confidence Intervals for a Population Proportion 43

equivalent to adding two successes and two failures to the sample. The consequence of this
adjustment is that p̃ is a bit larger than p̂ if p̂ < 0.5 and slightly smaller than p̂ if p̂ > 0.5. The
difference between p̃ and p̂ is more pronounced when p̂ is near 0 and 1 or when n is small.

In a similar fashion, we adjust the standard error. The standard error of p̃ is√
p̃(1− p̃)
n+ 4

. (G.2)

Using (4.3) with the new point estimate and standard error, and continuing to use the normal
distribution, we obtain the following formula for the confidence interval limits.

FORMULA G.2. The (1− α)100% confidence limits of a population proportion when n > 5 are given
by

L1 = p̃− z1−α2

√
p̃(1− p̃)
n+ 4

and L2 = p̃+ z1−α2

√
p̃(1− p̃)
n+ 4

.

Notice that these confidence limits may be used for all but the smallest sample sizes. As
noted earlier, the confidence limits from Formula G.2 are generally conservative, even for small
values of p, unlike Method 1. Since the calculations are no harder than in Method 1, Formula G.2
is preferred.

One might ask why we made the particular adjustment of adding two successes and two
failures to the sample to produce the new estimate. The complete answer is beyond the scope
of this text. However, it can be shown that this simple adjustment leads to a very, very
good approximation of a significantly more complicated method of computing exact confidence
intervals for p.

SOLUTION TO EXAMPLE G.1. In the epidemiologist’s case, since n = 1200 and X = 6,
then

p̃ =
X + 2

n+ 4
=

8

1204
= 0.00664,

which is nearly one-third larger than p̂. This is to be expected since we added 2 successes to
X = 6 while only adding 4 to n = 1200.

Using Formula G.2, the 95% confidence limits are

L1 = 0.00664− 1.960

√
(0.01039)(0.98961)

1204
= 0.00664− 0.00573 = 0.00091

and

L2 = 0.00664− 1.960

√
(0.01039)(0.98961)

1204
= 0.00664 + 0.00573 = 0.01237.

This time the 95% confidence interval for p, the proportion of Irish women under age 35 who
have experienced breast cancer, is 0.00091 to 0.01237 or between 91 and 1237 per 100, 000.
The confidence interval is wider (more conservative) and different in its center than the interval
calculated with Method 1.

The upper half of Table G.1 illustrates the effect of sample size on the calculation of 95%
confidence intervals for the population proportion using the two different methods. For very
large samples, both methods will produce very similar confidence intervals. The lower half of
the table shows that the closer p is to 0.5, the less pronounced the difference between the two
intervals will be.
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TABLE G.1. The effect of sample size on 95% confidence intervals using the sample
proportion p̂ (Method 1) and the Wilson estimate p̃ (Method 2).

Standard: Method 1 Wilson: Method 2

n X p̂ SE L1 L2 p̃ SE L1 L2

200 1 0.005 0.00499 −0.00478 0.01478 0.01471 0.00843 −0.00181 0.03123
600 3 0.005 0.00288 −0.00064 0.01064 0.00828 0.00369 0.00105 0.01551

1000 5 0.005 0.00223 0.00063 0.00937 0.00697 0.00263 0.00182 0.01212

5000 25 0.005 0.00100 0.00304 0.00696 0.00540 0.00104 0.00337 0.00743
10000 50 0.005 0.00071 0.00361 0.00639 0.00520 0.00072 0.00379 0.00661

100 10 0.1 0.03000 0.04120 0.15880 0.11538 0.03133 0.05398 0.17678
100 20 0.2 0.04000 0.12160 0.27840 0.21154 0.04005 0.13305 0.29003

100 30 0.3 0.04583 0.21017 0.38983 0.30769 0.04526 0.21899 0.39639

100 40 0.4 0.04899 0.30398 0.49602 0.40385 0.04811 0.30955 0.49815
100 50 0.5 0.05000 0.40200 0.59800 0.50000 0.04903 0.40390 0.59610

Choosing Sample Sizes

In some situations a researcher may wish to design a study that will produce a confidence interval
for the population proportion p of a certain pre-specified width. This can be accomplished by
using a sufficiently large sample size, n.

EXAMPLE G.2. Using county medical records, the epidemiologist now wishes to determine the
five-year survival rate, p, of all women diagnosed with breast cancer in the 1970’s. She would like
to determine p to within 2%. More precisely, she wishes to construct a 95% confidence interval
whose endpoints are within 2% of the five-year survival rate. How large of a sample will she need
to do this?

We will carry out the analysis for this problem using the Wilson estimate method; you are
asked to carry out the analysis for Method 1 in the exercises at the end of the chapter.

The epidemiologist wants to determine p ± 0.02. Using Formula G.2 the endpoints of a
(1− α)100% confidence interval are

p̃± z1−α
2

√
p̃(1− p̃)
n+ 4

.

We define the margin of error for a (1−α)100% confidence interval for a population proportion
to be

m = z1−α
2
SEp̃ = z1−α

2

√
p̃(1− p̃)
n+ 4

. (G.3)

The researcher specifies m and the confidence level. But having chosen the confidence level,
the value of z1−α

2
is determined. So to solve for the sample size n we simply need p̃. However,

since the researcher has not yet done the study, p̃ is unknown. But the researcher can’t do the
study until the sample size is known. We seem to be stuck.

There are two ways around this problem. If resources allow, one could do a pilot study to
estimate p̃. The other solution is to observe that in (G.3), for any fixed value of n, the margin
of error is largest when p̃ = 0.5.1 Using p̃ = 0.5 is the conservative approach as it will produce
an overestimate of n.

1You may recall that for a concave down quadratic equation such as p̃(1 − p̃) = p̃ − p̃2, the maximum value
occurs half way between the two roots, which, in this case, is half way between 0 and 1.
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With p̃ = 0.5 in (G.3), we have

m ≤ z1−α
2

√
0.5(1− 0.5)

n+ 4

or, squaring both sides of the equation,

m2 ≤ z2
1−α

2

(
0.25

n+ 4

)
.

Thus,

n+ 4 ≤ 0.25

(
z1−α

2

m

)2

=

(
z1−α

2

2m

)2

.

Solving for n, we obtain

FORMULA G.3. A (1− α)100% confidence interval for a population proportion p will have a margin
of error no greater than the pre-specified value m if the sample size is

n =
(z1−α2

2m

)2
− 4.

As mentioned, this value of n is conservative (larger than necessary). For values of p̃ near 0.5
Formula G.3 will give very good estimates of the sample size required. However, if p̃ < 0.15 or
p̃ > 0.85, then the sample size given by Formula G.3 will be at least twice as large as necessary.

SOLUTION TO EXAMPLE G.2. We may now apply Formula G.3 to determine the sample
size for the breast cancer survival rate study. Since the epidemiologist wants a 95% confidence
interval with a 2% margin of error, α = 0.05 and m = 0.02. Thus,

n =
(z1−α2

2m

)2
− 4 =

(
1.960

2(0.02)

)2

− 4 = 2397.

The researcher should use a sample size of roughly 2400.

G.2 Problems

1. To determine the frequency of type O blood (the universal donor) in a population, a random sample
of 100 people were blood typed for the ABO group. Of this 100, 42 were found to be type O.
Calculate the 95% confidence limits for the proportion of the population that has type O blood.

2. Dabbling ducks such as black ducks and mallards often have very skewed sex ratios. In the sample
above, 10 were found to be females and the rest males. Use this information to generate a 95%
confidence interval for the proportion of females in the flock.

3. In a study of the effectiveness of acupuncture to relieve the symptoms of shoulder impingement, 53
of 80 patients claimed to have complete recovery within one year of the end of a series of acupuncture
treatments. Is this number significantly higher than the 50% that claim the same result with surgery?
Find the 95% confidence interval for the proportion p of those obtaining complete recovery from
acupuncture and use this interval to answer the question.

4. In a population where the proportion of people who have the ability to taste umami is unknown,
a random sample of 100 people were tested and 74 could clearly distinguish umami from saltiness.
Calculate the 95% and 99% population proportion confidence intervals for this finding.
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5. Derive the analogue of Formula 4.4 for sample size for use with p̂ and Method 1 of computing
confidence intervals.

6. (a) A pharmaceutical company wants to obtain a 95% confidence interval for the population propor-
tion p of people who obtain relief from pain of headache in under 30 minutes using their product
with a margin of error of no more than 3%. What size should their survey sample be?

(b) How would the sample size need to change if a 99% confidence interval were required?

7. In a pilot study, a public health survey of 2000 people in the 40–49 age group in Boston reveals
that 29 have AIDS. Estimate the population proportion and find a 98% confidence interval for the
estimate. Express your answer as a rate per 100, 000.

8. (a) A researcher is interested in determining the incidence rate of Ehlers-Danlos syndrome, a rare
autosomal dominant disorder characterized by a collagen defect affecting joint hypermobility
and skin hyperextensibility. Suppose that an initial pilot study is conducted to find a confidence
interval for the incidence rate p. The survey uses a random sample of 500 people and locates
no one with the condition. Determine a 95% confidence interval first using Method 1 and then
using Method 2. Comment on the result.

(b) Suppose instead that the survey used 1000 people and found none with the condition. Again
determine 95% confidence intervals using both methods. Comment on the result.

(c) Suppose that the true incidence rate were p = 0.001. How likely was it that a survey with
500 people locates no one with the condition? What if the survey had a sample size of 1000?
Comment on this in relation to the earlier parts.

9. A 2007 telephone survey of 1,213 people in Sydney, Australia revealed that 40% of the respondents
thought that global warming was a greater threat to security than terrorism. The poll indicated that
there was a margin of error of no more than m = 3%. However the confidence level 1 − α was not
given. Determine this level. (Source: the New York Times, www.nytimes.com/2007/10/04/world/
asia/04australia.html)
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G.3 Answers

1. Using Method 1, p̂ = 0.42.

L1 = p̂− z
√
p̂(1− p̂)

n
= 0.42− 1.960

√
(0.42)(0.58)

100
= 0.42− 0.097 = 0.323.

L2 = p̂+ z

√
p̂(1− p̂)

n
= 0.42 + 1.960

√
(0.42)(0.58)

100
= 0.42 + 0.097 = 0.517.

Using Method 2, p̃ = 44
104 = 0.4231.

L1 = p̃− z
√
p̃(1− p̃)

n
= 0.4231− 1.960

√
(0.4231)(0.5769)

104
= 0.4231− 0.0950 = 0.3281.

L2 = p̃+ z

√
p̃(1− p̃)

n
= 0.4231 + 1.960

√
(0.4231)(0.5769)

104
= 0.4231 + 0.0950 = 0.5181.

2. Using Method 1 with p̂ = 0.4

L1 = p̂− z1−α2

√
p̂(1− p̂)

n
= 0.4− 1.960

√
0.4(0.6)

25
= 0.208

and

L2 = p̂+ z1−α2

√
p̂(1− p̂)

n
= 0.592.

Using Method 2 with p̂ = 12
29 = 0.4138

L1 = p̃− z1−α2

√
p̃(1− p̃)
n+ 4

= 0.4138− 1.960

√
0.4138(0.5862)

29
= 0.2345

and

L2 = p̃+ z1−α2

√
p̃(1− p̃)
n+ 4

= 0.5931.

3. Using Method 1, p̂ = 53
80 = 0.6625. From Formula 4.3 the endpoints for a 95% confidence interval

for p are

L1 = p̂− 1.960

√
p̂(1− p̂)

n
= 0.6625− 1.960

√
0.6625(1− 0.6625)

80
= 0.5589

and

L2 = p̂+ 1.960

√
p̂(1− p̂)

n
= 0.6625 + 1.960

√
0.6625(1− 0.6625)

80
= 0.7661.

Since 50% lies outside (below) this interval, the recovery rate p for acupuncture is significantly
different (higher) than for surgery.

Using Method 2, the results are the same. This time p̃ = 55
82 = 0.6548, so

L1 = p̃− z
√
p̃(1− p̃)

n
= 0.6548− 1.960

√
(0.6548)(0.3452)

82
= 0.6548− 0.1017 = 0.5531;

L2 = p̃+ z

√
p̃(1− p̃)

n
= 0.6548 + 1.960

√
(0.6548)(0.3452)

82
= 0.6548 + 0.1017 = 0.7565.
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4. For Method 1 use Formula 4.3 with p̂ = 0.74. Note that np̂ = 100 × 0.74 = 74 > 5 and n(1 − p̂) =
100× 0.26 = 26 > 5. For a 95% confidence interval, the endpoints are

L1 = p̂− 1.960

√
p̂(1− p̂)

n
and L2 = p̂+ 1.960

√
p̂(1− p̂)

n
.

Thus,

L1 = 0.74− 1.960

√
(0.74)(0.26)

100
= 0.74− 0.086 = 0.654

and L2 = 0.74 + 0.086 = 0.826.
For a 99% confidence interval, the endpoints are

L1 = 0.74− 2.58

√
(0.74)(0.26)

100
= 0.74− 0.113 = 0.627

and L2 = 0.74 + 0.113 = 0.853.
Using Method 2, p̃ = 74

104 = 0.7308, so

L1 = p̃− z
√
p̃(1− p̃)

n
= 0.7308− 1.960

√
(0.7308)(0.2692)

104
= 0.7308− 0.0852 = 0.6456.

L2 = p̃+ z

√
p̃(1− p̃)

n
= 0.7308 + 1.960

√
(0.7308)(0.2692)

104
= 0.7308 + 0.0852 = 0.8160.

For a 99% confidence interval, the endpoints are

L1 = 0.7308− 2.58

√
(0.7308)(0.2692)

100104
= 0.7308− 0.1122 = 0.6186

and L2 = 0.7308 + 0.1122 = 0.8430.

5. This time

m = z1−α2 SEp̂ = z1−α2

√
p̂(1− p̂)

n
.

Again using the conservative approach with p = 0.5,

n =
(z1−α2

2m

)2
.

There is only a difference of 4 between the estimated sample sizes for the two methods.

6. (a) Using Formula 4.4 (for Method 2), Thus,

n =
(z1−α2

2m

)2
− 4 =

(
1.960

2(0.03)

)2

− 4 = 1063.

Using the analogous formula for Method 1 yields

n =
(z1−α2

2m

)2
=

(
1.960

2(0.03)

)2

= 1067.

(b) This time using Formula 4.4

n =
(z1−α2

2m

)2
− 4 =

(
2.58

2(0.03)

)2

− 4 = 1845

while for Method 1 we will obtain n = 1849.
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7. Using Method 1 with p̂ = 29
2000 = 0.0145

L1 = p̂− z1−α2

√
p̂(1− p̂)

n
= 0.0145− 2.33

√
0.0145(0.9855)

2000
= 0.00827

and

L2 = p̂+ z1−α2

√
p̂(1− p̂)

n
= 0.02072.

This is the same as an incident rate of 827 to 2072 per 100, 000 people in the 40–49 age group.
Using Method 2, the Wilson estimate is

p̃ =
X + 2

n+ 4
=

31

2004
= 0.01547.

The endpoints of a 98% confidence interval are

L1 = p̃− z1−α2

√
p̃(1− p̃)
n+ 4

= 0.01547− 2.33

√
0.01547(1− 0.01547)

2004
= 0.00905

and

L2 = 0.01547 + 2.33

√
0.01547(1− 0.01547)

2004
= 0.02189.

This is the same as an incident rate of 905 to 2189 per 100, 000 people in the 40–49 age group.

8. (a) Using Method 1 with p̂ = 0
500 = 0 yields

L1 = 0− 1.96

√
0(1)

500
= 0 and L2 = 0 + 1.96

√
0(1)

500
= 0.

The 95% confidence interval consists of the single point 0.
Using Method 2 with p̃ = 2

504 = 0.00397 yields

L1 = 0.00397− 1.96

√
0.00397(1− 0.00397)

504
= −0.00152

and

L2 = 0.00397 + 1.96

√
0.00397(1− 0.00397)

504
= 0.00946.

Since a proportion cannot be negative, L1 = 0. So the 95% confidence interval using Method 2
is [0, 0.00946]. The result from Method 1 cannot be correct. It suggests that we are certain that
the incidence rate is 0. Method 2 gives a more reasonable estimate. Notice that even though
the sample size is “large”, given that p̂ = 0, we should be suspicious of using Method 1 which
requires np(1− p) > 5.

(b) Using Method 1 with p̂ = 0 again yields L1 = L2 = 0. Using Method 2 with p̃ = 2
1004 = 0.00199

yields

L1 = 0.00199− 1.96

√
0.00199(1− 0.00199)

1004
= −0.00077

and

L2 = 0.00199 + 1.96

√
0.00199(1− 0.00199)

1004
= 0.00475.

The 95% confidence interval using Method 2 is [0, 0.00475]. Method 1 is still inadequate. Dou-
bling the sample size decreased the size of the confidence interval for Method 2.
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(c) Use a binomial distribution with p = 0.001. If n = 500, then

P (X = 0) =

(
500

0

)
(0.001)0(0.999)500 = 0.60638.

If n = 1000, then

P (X = 0) =

(
1000

0

)
(0.001)0(0.999)1000 = 0.36770.

In the first case, there is a 60% chance that no one with the condition will be found, yet the
Method 1 interval does not contain the correct proportion (and consists of a single point). In
the second case, there is nearly a 37% chance that no one with the condition will be found and
Method 1 again fails to capture the true proportion. In other words, in two situations where
the outcome of the survey is (very) likely, Method 1 fails to capture the true proportion. Notice
that Method 2 does.

9. Using Formula 4.4 (for Method 2),

n =
(z1−α2

2m

)2
− 4 =⇒ 1213 =

(
z1−α2

2(0.03)

)2

− 4

=⇒ 1217 =
(z1−α2

0.06

)2
=⇒

√
1217 =

z1−α2
0.06

=⇒ z1−α2 = 0.06
√

1217 ≈ 2.09.

From Table C.3, 1− α
2 = 0.9817 so α

2 = 0.183 or 1− α = 0.9634.

Using the analogous formula for Method 1 yields z1−α2 = 0.06
√

1214 ≈ 2.09 and again 1 − α =
0.9634.



H

Field Methods

Concepts in Appendix D:

• The Petersen Method

• The Point-Centered Quarter Method

• Diversity Indices

H.1 Estimating the Size of a Population with the Petersen Method

One of the most important and difficult to measure characteristics of a natural population is its
size. Animals that are highly mobile or that have ephemeral life histories are particularly hard
to census. Various capture-mark-recapture methods have been employed to solve this problem.
One of the first ecological uses of mark and recapture was developed by C. G. J. Petersen in
1896 to study fish movements and subsequently to estimate fish population sizes. His method
is relatively straight forward and utilizes concepts developed earlier in this text.

Assumptions

The assumptions of the Petersen Method are:

• The population is closed, that is, the population does not change size during the study
period because of births, deaths, or movements.

• All animals in the population have the same chance of getting caught in a sample.

• Marking individuals does not affect their catchability.

• Animals do not lose their marks between sampling periods and all marked animals in the
second sample are identified.

The Petersen Method

The basic procedure is to capture a number of animals in a short period of time, mark and
release them, then to capture a second random sample and check these individuals for marks.
The following data are obtained:

• M is the number of individuals marked and released in the first sample (M = marked).

• C is the total number of individuals captured in the second sample (C = captured).

• R is the number of individuals in the second sample that are marked (R = recaptured).
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Using these variables we can estimate N , the size of the population at the time of marking.
Utilizing a proportionality argument

N

M
=
C

R
.

That is, the number marked (M) of the total population (N) should be proportional to the
number recaptured (R) out of the second random sample (C). So N̂ is the estimated population
size

N̂ =
CM

R
. (H.1)

This estimate has been widely used because it is intuitively clear but, unfortunately, it pro-
duces a biased estimator of the population size, tending to overestimate the actual population.
This bias can be large for small sample sizes and Seber has suggested the following modification

N̂ =
(C + 1)(M + 1)

R+ 1
− 1 (H.2)

which is unbiased if (C +M) > N and is nearly unbiased if R > 7, that is, if there are at least
seven recaptures.

Once the population size, N̂ , has been estimated with one of these methods, it is usually
appropriate to generate some measure of the confidence in the estimate. Confidence intervals
may be used to provide a clearer understanding of the accuracy of the population size estimate.
Unfortunately there are three forms of confidence intervals. Each is appropriate for different
types of experimental outcomes.

a) If the ratio R
C > 0.10, use binomial confidence intervals to generate confidence limits for

N . This method involves finding the confidence limits for the proportion R
C and then

using the lower and upper values of R
C in the N̂ = CM

R equation to find the confidence

limits for N̂ .

The lower limit for R
C is

L1 =
R

R+ (C −R+ 1)Fα
2

(ν1,ν2)

where ν1 = 2(C −R+ 1) and ν2 = 2R.

The upper limit for R
C is

L2 =
(R+ 1)Fα

2
(ν′1,ν

′
2)

C −R+ (R+ 1)Fα
2

(ν′1,ν
′
2)

where ν ′1 = 2(R+ 1) = ν2 + 2 and ν ′2 = 2(C −R) = ν1 − 2.

EXAMPLE H.1. Suppose in a large study of mammal populations, the first night 250 (M) white-
footed mice, Peromyscus leucopus, were caught in live traps and marked with fluorescent paint
then released. The second night 200 (C) mice were caught of which 50 (R) were marked. Estimate
the mouse population size and find the appropriate 95% confidence interval for this estimate.

SOLUTION. Using Petersen’s original equation (H.1)

N̂ =
CM

R
=

200(250)

50
= 1000.
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Using Seber’s modified equation (H.2)

N̂ =
(C + 1)(M + 1)

R+ 1
− 1 =

(201)(251)

51
− 1 = 988.

Next
R

C
=

50

200
= 0.25.

Using ν1 = 2(200− 50 + 1) = 302 and ν2 = 2(50) = 100, The lower limit for R
C is

L1 =
50

50 + (200− 50 + 1)F0.025(302,100)
= 0.187.

Using ν′1 = 100 + 2 = 102 and ν′2 = 302− 2 = 300, the upper limit for R
C is

L2 =
(50 + 1)F0.025(102,300)

200− 50 + (51)F0.025(102,300)
= 0.329

Using the lower and upper confidence limits for R
C in the formula for N̂ , we find that:

the lower 95% confidence limit for N is:
1

0.329
(250) = 769

the upper 95% confidence limit for N is:
1

0.187
(250) = 1337.

We are 95% confident that N is between 769 and 1337 mice.

b) If the ratio R
C < 0.10 and R > 50, then use a normal approximation to develop the

confidence limits for N . Again, first find confidence limits for R
C and then use these in the

Petersen formula to generate the limits for N . Here the lower and upper limits for the R
C

ratio are

L1 =
R

C
− zα

2

√(
R
C

) (
1− R

C

)
C − 1

and

L2 =
R

C
+ zα

2

√(
R
C

) (
1− R

C

)
C − 1

.

EXAMPLE H.2. If 1200 mice were caught on day one and 800 on day two with 60 of them being
recaptures, find the estimated population size and its 95% confidence limits.

SOLUTION. In this case, using (H.1)

N̂ =
CM

R
=

800(1200)

60
= 16, 000.

Since R
C = 60

800 = 0.075 < 0.10 and R = 60 > 50, use the normal approximation for the confidence

interval. The confidence limits for R
C are

L1 =
60

800
− 1.960

√(
60
800

) (
1− 60

800

)
800− 1

= 0.075− 0.0183 = 0.0567

and

L2 =
60

800
+ 1.960

√(
60
800

) (
1− 60

800

)
800− 1

= 0.075 + 0.0183 = 0.0933.
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We find that:

the lower 95% confidence limit for N is:
1

0.0933
(1200) = 12, 861

the upper 95% confidence limit for N is:
1

0.0567
(1200) = 21, 315.

So we are 95% confident that N is between 12,861 and 21,315 mice.

c) Finally, if the R
C < 0.10 and R < 50, use Poisson confidence intervals for R to generate

confidence limits for N as follows. The lower confidence limit for R is

L1 =
χ2
α
2

2
,

where ν = 2R. The upper limit for R is

L2 =
χ2

1−α
2

2
,

where ν = 2(R+ 1).

EXAMPLE H.3. If 200 mice were caught in day one and 150 on day two with 12 being recaptures,
find the estimated population size and its 95% confidence limits.

SOLUTION. This time using (H.1)

N̂ =
CM

R
=

150(200)

12
= 3125.

Since R
C = 12

150 = 0.08 < 0.10 and R = 12 < 50, use the Poisson technique to generate confidence
intervals. Confidence limits for R are

L1 =
χ2
0.025(24)

2
=

12.4

2
= 6.2,

where ν = 2(12) = 24. The upper limit for R is

L2 =
χ2
0.975(26)

2
=

41.9

2
= 20.95,

where ν = 2(12 + 1) = 26. We find that:

the lower 95% confidence limit for N is:
150(200)

20.95
= 1431

the upper 95% confidence limit for N is:
150(200)

6.2
= 4839

So we estimate this population size N to be between 1431 and 4839 mice.

Although the confidence intervals are calculated somewhat differently in each of the three
cases above, their interpretation remains the same as with any confidence interval discussed
earlier (see Chapter 4 and Chapter 10). For further discussion of Petersen’s Method and other
more complex mark and recapture techniques see Krebs (1999).
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H.2 The Point-Centered Quarter Method

Introduction and History

A wide variety of methods have been used to study forest structure parameters such as popula-
tion density, basal area, and biomass. While these are sometimes estimated using aerial surveys
or photographs, most studies involve measurement of these characteristics for individual trees
using a number of different sampling methods. These methods fall into two broad categories:
plot-based and plot-less. Plot-based methods begin with one or more plots (quadrats, belts) of
known area in which the characteristics of interest are measured for each plant. In contrast,
plot-less methods involve measuring distances for a random sample of trees, typically along
a transect, and recording the characteristics of interest for this sample. The point-centered
quarter method is one such plot-less method.

The advantage to using plot-less methods rather than standard plot-based techniques is that
they tend to be more efficient. Plot-less methods are faster, require less equipment, and may
require fewer workers. However, the main advantage is speed. The question, then, is whether
accuracy is sacrificed in the process.

Stearns (1949) indicated that the point-centered quarter method dates back a least 150 years
and was used by surveyors in the mid-nineteenth century making the first surveys of government
land. In the late 1940s and early 1950s, several articles appeared that described a variety of
plot-less methods and compared them to sampling by quadrats. In particular, Cottam, Curtis,
and Hale (1953) compared the point-centered quarter method to quadrat sampling and derived
empirically a formula that could be used to estimate population density from the distance data
collected. Since the current paper is intended as an introduction to these methods, it is worth
reminding ourselves what the goal of these methods is by recalling part of the introduction to
their paper:

As our knowledge of plant communities increases, greater emphasis is being placed
on the methods used to measure the characteristics of these communities. Succeed-
ing decades have shown a trend toward the use of quantitative methods, with purely
descriptive methods becoming less common. One reason for the use of quantitative
techniques is that the resulting data are not tinged by the subjective bias of the
investigator. The results are presumed to represent the vegetation as it actually
exists; any other investigator should be able to employ the same methods in the
same communities and secure approximately the same data.

Under the assumption that trees are distributed randomly throughout the survey site,
Morisita (1954) provided a mathematical proof for the formula that Cottam, Curtis, and Hale
(1953) had derived empirically for the estimation of population density using the point-centered
quarter method. In other words, the point-centered quarter method could, in fact, be used to
obtain accurate estimates of population densities with the advantage that the point-centered
quarter method data could be collected more quickly than quadrat data. Subsequently, Cottam
and Curtis (1956) provided a more detailed comparison of the point-centered quarter method
and three other plot-less methods (the closest individual, the nearest neighbor, and the random
pairs methods). Their conclusion was:

The quarter method gives the least variable results for distance determinations,
provides more data per sampling point, and is the least susceptible to subjective
bias.. . .
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It is the opinion of the authors that the quarter method is, in most respects, superior
to the other distance methods studied, and its use is recommended.

Beasom and Haucke (1975) compared the same four plotless methods and also concluded that
point-centered quarter method provides the most accurate estimate of density. In a comparison
of a more diverse set of methods (Engeman, et al. 1994) have a more nuanced opinion of whether
the point-centered quarter method is more efficient in the field and more accurate in its density
estimates, especially in situations where individuals are not distributed randomly.

In recent years, as the point-centered quarter method has been used more widely, variations
have been proposed by Dahdouh-Guebas and Koedam (2006) to address a number of practical
problems that arise in the field (multi-stem trees, quarters where no trees are immediately
present).

One use of the point-centered quarter method is to determine the relative importance
of the various tree species in a community. The term “importance” can mean many things
depending on the context. An obvious factor influencing the importance of a species to a
community is the number of trees present of that species. However, the importance of some
number of small trees is not the same as the importance of the same number of large trees.
So the size of the trees also plays a role. Further, how the trees are distributed throughout
the community also has an effect. A number of trees of the same species clumped together
should have a different importance value than the same number of trees distributed more
evenly throughout the community.

Measuring importance can aid understanding the successional stages of a forest habitat. At
different stages, different species of trees will dominate. Importance values are one objective
way of measuring this dominance.

The three factors that we will use to determine the importance value of a species are the
density, the size, and the frequency (distribution). Ideally, to estimate these factors, one would
take a large sample, measuring, say, all the trees in a 100× 100 meter square (a hectare). This
can be extraordinarily time consuming if the trees are very dense. The point-centered quarter
method provides a quick way to make such estimates by using a series of measurements along
a transect.

Materials and Methods

The procedure outlined below describes how to carry out point-centered quarter method data
collection along a 100 m transect. It can be scaled up or down, as appropriate, for longer or
shorter transects. While this analysis can be carried out alone, groups of two or three can make
for very efficient data collection. Material requirements include 50 or 100 meter tape, a shorter
5 or 10 meter tape, a notebook, a calculator, and a table of random numbers (Table H.13) if
the calculator cannot generate them.

1. Generate a list of 15 to 20 random two-digit numbers. If the difference of any two is
4 or less, cross out the second listed number. There should be 10 or more two-digit
numbers remaining; if not, generate additional ones. List the first 10 remaining numbers
in increasing order. It is important to generate this list before doing any measurements.

2. Lay out a 100 m transect (or longer or shorter as required).
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3. The random numbers represent the distances along the transect at which data will be
collected. Random numbers are used to eliminate bias. Everyone always wants to mea-
sure that BIG tree along the transect, but such trees may not be representative of the
community.1 The reason for making sure that points are at least 5 meters apart is so that
the same trees will not be measured repeatedly. Caution: If trees are particularly sparse,
both the length of the transect and the minimum distance between points may need to
be increased.

4. The smallest random number determines the first sampling point along the transect. At
this (and every sampling) point, run an imaginary line perpendicular to the transect. This
line and the transect divide the world into four quarters (hence the name, point-centered
quarter method).
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FIGURE H.1. Sample points along a transect with the nearest
trees in each quarter indicated by · · · · · · .

5. Select one of the quarters. In that quarter, locate the tree nearest to the sampling point.
For the purposes of this exercise, to be counted as a “tree” it should have a minimum
diameter of 4 cm or, equivalently, a minimum circumference of 12.5 cm. (Caution: In
other situations, different minimum values may apply.)

For the each sampling point, record:

(a) the quarter number (I, II, III, or IV);

(b) the distance from the sampling point to the center of the trunk of the tree to the
nearest 0.1 m (Caution: Review Chapter 1 on the 30–300 Rule.);

(c) the species of the tree;

(d) and the diameter at breast height (DBH) or circumference at chest height (CCH) to
the nearest cm, but again observe the 30–300 Rule.

Note: Brokaw and Thompson (2000) have shown that it is important to use the same
height to measure the diameter or circumference. They suggest using a standard
height of 130 cm and employing the notation D130 rather than DBH to indicate this.
Whatever height is used should be explicitly noted in the results.

Note: Tree calipers are an easy way to measure diameters, but are often unavailable.
It may be more convenient to measure the girth (circumference) of each tree instead
of the diameter.

1Even Cottam and Curtis (1956) warn us about this tendency: “Repeated sampling of the same stand with
different investigators indicates that some individuals have a tendency to place the sampling points so that large
or unusual trees occur more commonly than they occur in the stand.”
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Cautions: If a tape is used to measure DBH, avoid protrusions on the trunk. If
calipers are used, an average from three caliper readings is recorded. If girths are
recorded, rather than convert each girth to a diameter, change the column heading
from DBH to CCH. Make the appropriate scaling adjustment in later calculations
whenever diameters are involved.

See Table H.1 for how this data should be organized. Repeat this for the other three
quarters at this sampling point. If a tree species cannot be identified, simply record it as
A, B, C, etc., and collect and label a sample leaf that for comparison purposes at other
quarters and later taxonomic identification.

6. Repeat this process for the entire set of sampling points.

7. Carry out the data analysis as described below.

For trees with multiple trunks at breast height, record the diameter (circumference) of each
trunk separately. What is the minimum allowed diameter of each trunk in a such multi-trunk
tree? Such decisions should be spelled out in the methods section of the resulting report. At
a minimum, one should ensure that the combined cross-sectional areas of all trunks meet the
previously established minimum cross-sectional area for a single trunk tree. For example, with
a 4 cm minimum diameter for a single trunk, the minimum cross-sectional area is

πr2 = π(2)2 = 4π ≈ 12.6 cm2.

Data Organization and Notation

The Data Layout

Table H.1 illustrates how the data should be organized for the point-centered quarter method
analysis. Note the multi-trunk Acacia (8 cm, 6 cm; D130) in the third quarter at the second
sampling point. The only calculation required at this stage is to sum the distances from the
sample points to each of the trees that was measured. Note: A sample of only five points as in
Table H.1 is too few for most studies. These data are presented only to illustrate the method
of analysis in a concise way.

Notation

We will use the following notation throughout this section.

n the number of sample points along the transect

4n the number of samples or observations
one for each quarter at each point

i a particular transect point, where i = 1, . . . , n

j a quarter at a transect point, where j = 1, . . . , 4
Rij the point-to-tree distance at point i in quarter j

For example, the sum of the distances in the Table H.1 is

5∑
i=1

4∑
j=1

Rij = 40.9.
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TABLE H.1. Field data organized for point-centered quarter method
analysis.

Sampling Point Quarter No. Species Distance (m) D130 (cm)

1 1 Acacia 1.1 6
2 Eucalyptus 1.6 48

3 Casuarina 2.3 15

4 Callitris 3.0 11

2 1 Eucalyptus 2.8 65

2 Casuarina 3.7 16
3 Acacia 0.9 8, 6

4 Casuarina 2.2 9

3 1 Acacia 2.8 4

2 Acacia 1.1 6

3 Acacia 3.2 6
4 Acacia 1.4 5

4 1 Callitris 1.3 19

2 Casuarina 0.8 22
3 Casuarina 0.7 12

4 Callitris 3.1 7

5 1 Acacia 1.5 7

2 Acacia 2.4 5

3 Eucalyptus 3.3 27
4 Eucalyptus 1.7 36

Total 40.9

Basic Analysis

The next three subsections outline the estimation of density, frequency, and cover. The most
widely studied of the three is density. In Section H.2 we present a more robust way to determine
the both a point estimate and a confidence interval for population density. In this section
density, frequency, and cover are defined both in absolute and relative terms. The relative
measures are then combined to create a measure of relative importance.

Density

Absolute Density

The absolute density λ of trees is defined as the number of trees per unit area. Since λ is
most easily estimated per square meter and since a hectare is 10,000 m2, λ is often multiplied
by 10,000 to express the number of tree per hectare. The distances measured using the point-
centered quarter method may be used to estimate λ to avoid having to count every tree within
such a large area.

Note that if λ is given as trees/m2, then its reciprocal 1/λ is the mean area occupied by a
single tree. This observation is the basis for the following estimate of λ. (Also see Section H.2.)

From the transect information, determine the mean distance r̄, which is the sum of the
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nearest neighbor distances in the quarters surveyed divided by the number of quarters,

r̄ =

∑n
i=1

∑4
j=1Rij

4n
.

For the data in Table H.1,

r̄ =
40.9

20
= 2.05 m.

Cottam, Curtis, and Hale (1953) showed empirically and Morisita (1954) demonstrated math-
ematically that r̄ is actually an estimate of

√
1/λ, the square root of the mean area occupied

by a single tree. Consequently, an estimate of the density is given by

Absolute density = λ̃ =
1

r̄2
=

16n2(∑n
i=1

∑4
j=1Rij

)2 . (H.3)

For the data in Table H.1,

λ̃ =
1

r̄2
=

1

2.052
= 0.2380 trees/m2,

or, equivalently, 2380 trees/ha.
One way to “see this” is to imagine a forest where the trees are uniformly distributed on

a square grid whose sides are r̄ = 2.05 m long. If a tree is located at the center of each
square in this “forest,” then the mean distance r̄ between trees is 2.05 m. Such a forest
is illustrated in Figure H.2. Each tree occupies a square side 2.05 m and so the density is
1/2.052 = 0.2380 trees/m2 Though such a uniform arrangement of trees violates the assumption
of randomness, the figure does illustrate what is happening “on average” or in the mean.
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FIGURE H.2. A grid-like forest with trees uniformly dispersed so that the
nearest neighbor is 2.05 m.

Absolute Density of Each Species

The absolute density of an individual species is the expected number of trees of that species
per square meter (or hectare). The absolute density λk of species k is estimated as the
proportion of quarters in which the species is found times the absolute density of all trees.

λ̂k =
Quarters with species k

4n
× λ̂. (H.4)
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Table H.2 gives the absolute density for each species in Table H.1.

TABLE H.2. The absolute density of each species.

Species Frequency/Quarter Trees/ha

Acacia 8/20 = 0.40 0.40× 2380 = 952
Eucalyptus 4/20 = 0.20 0.20× 2380 = 476

Casuarina 5/20 = 0.25 0.25× 2380 = 595

Callitris 3/20 = 0.15 0.15× 2380 = 357

Total 2380

Relative Density of a Species

The relative density of each species is the percentage of the total number observations of that
species,

Relative density (Species k) =
λ̂k

λ̂
× 100.

Equivalently by making use of (H.4), we may define

Relative density (Species k) =
Quarters with species k

4n
× 100. (H.5)

In the current example, using the first definition, the relative density of a species can be found
by making use of the data in column 3 of Table H.2. For example,

Relative density of Eucalyptus =
476

2380
× 100 = 20.0.

Using the alternative method in (H.5) as a check on earlier calculations we see that the relative
density is just the proportion in column 2 of Table H.2 times 100. For example,

Relative density of Eucalyptus =
4

20
× 100 = 20.0.

The relative densities should sum to 100 plus or minus a tiny round-off error.

TABLE H.3. The relative density of each species.

Species Relative Density

Acacia 40.0

Eucalyptus 20.0
Casuarina 25.0

Callitris 15.0

Based on simulations, Cottam, Curtis, and Hale (1953) suggest that about 30 individuals
of a particular species must be present in the total sample before confidence can placed in any
statements about relative frequency.
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Cover or Dominance of a Species

Absolute Cover

The cover or dominance of an individual tree is measured by its basal area or cross-sectional
area. Let d, r, c, and A denote the diameter, radius, circumference, and basal area of a tree,
respectively. Since the area of a circle is A = πr2, it is also A = π(d/2)2 = πd2/4. Since the
circumference is c = 2πr, then the area is also A = c2/4π. Either A = πd2/4 or A = c2/4π
can be used to determine basal area, depending on whether DBH or CCH was recorded in
Table H.1.

The first step is to compute the basal area for each tree sampled, organizing the data by
species. This is the most tedious part of the analysis. A calculator that can handle lists of
data or a spreadsheet can be very handy at this stage. For the data in Table H.1, the basal
area for each tree was obtained using the formula A = πd2/4. For trees with multiple trunks,
the basal area for each trunk was computed separately and the results summed. (See Acacia in
Table H.4.)

TABLE H.4. The basal area of each tree.

Acacia Eucalyptus Casuarina Callitris Total

D130 Area D130 Area D130 Area D130 Area
(cm) (cm2) (cm) (cm2) (cm) (cm2) (cm) (cm2)

6 28.3 48 1809.6 15 176.7 11 95.0
8, 6 78.5 65 3318.3 16 201.1 19 283.5

4 12.6 27 572.6 9 63.6 7 38.5

6 28.3 36 1017.9 22 380.1
6 28.3 12 113.1
5 19.6

7 38.5
5 19.6

Total BA 253.7 6718.4 934.6 417.0 8323.7

Mean BA 31.71 1679.60 186.92 139.00 416.19

Next, determine the total cover or basal area of the trees in the sample by species, and then
calculate the mean basal area for each species.2 Be careful when computing the means as the
number of trees for each species will differ. Remember that each multi-trunk tree counts as a
single tree.

The absolute cover or dominance of each species is expressed as its basal area per hectare.
This is obtained by taking the number of trees per species from Table H.2 and multiplying by
the corresponding mean basal area in Table H.4. The units for cover are m2/ha (not cm2/ha),
so a conversion factor is required. For Acacia,

Absolute Cover (Acacia) = 31.71 cm2 × 952

ha
× 1 m2

10, 000 cm2
= 3.0

m2

ha
.

Finally, calculate the total cover per hectare by summing the per species covers.

2Note: Mean basal area cannot be calculated by finding the mean diameter for each species and then using
the formula A = πd2/4.
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TABLE H.5. The total basal area of each species.

Species Mean BA Number/ha Total BA/ha

(cm2) (m2/ha)

Acacia 31.71 952 3.0

Eucalyptus 1679.60 476 79.9
Casuarina 186.92 595 11.1

Callitris 139.00 357 5.0

Total Cover/ha 99.0

Relative Cover (Relative Dominance) of a Species

The relative cover or relative dominance [see Cottam and Curtis (1956)] for a particular
species is defined to be the absolute cover for that species divided by the total cover times 100
to express the result as a percentage. For example, for Eucalyptus,

Relative cover (Eucalyptus) =
79.9 m2/ha

99.0 m2/ha
× 100 = 80.7.

The relative covers should sum to 100% plus or minus a tiny round-off error. Note that the
relative cover can also be calculated directly from the transect information in Table H.4.

Relative cover (Species k) =
Total BA of species k along transect

Total BA of all species along transect
× 100. (H.6)

For example,

Relative cover (Eucalyptus) =
6718.4 cm2

8323.7 cm2
× 100 = 80.7.

TABLE H.6. The relative cover of each species.

Species Relative Cover

Acacia 3.0
Eucalyptus 80.7

Casuarina 11.2

Callitris 5.1

The Frequency of a Species

Absolute Frequency of a Species

The absolute frequency of a species is the percentage of sample points at which a species
occurs. Higher absolute frequencies indicate a more uniform distribution of a species while
lower values may indicate clustering or clumping. It is defined as

Absolute frequency =
No. of sample points with a species

Total number of sample points
× 100. (H.7)

For example,

Absolute frequency (Acacia) =
4

5
× 100 = 80%.
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Note that absolute frequency is based on the number of sample points, not the number of
quarters!

TABLE H.7. The absolute cover of each species.

Species Absolute Frequency

Acacia (4/5)× 100 = 80

Eucalyptus (3/5)× 100 = 60

Casuarina (3/5)× 100 = 60
Callitris (2/5)× 100 = 40

Total 240

Note that the total will sum to more than 100%.

Relative Frequency of a Species

To normalize for the fact that the absolute frequencies sum to more than 100%, the relative
frequency is computed. It is defined as

Relative frequency =
Absolute frequency of a species

Total frequency of all species
× 100. (H.8)

For example,

Relative frequency (Acacia) =
80

240
× 100 = 33.3.

The relative frequencies should sum to 100 plus or minus a tiny round-off error.

TABLE H.8. The relative frequency of each species.

Species Relative Frequency

Acacia 33.3
Eucalyptus 25.0

Casuarina 25.0
Callitris 16.7

What is the difference between relative frequency and relative density? A high relative
frequency indicates that the species occurs near relatively many different sampling points,
in other words, the species is well-distributed along the transect. A high relative density
indicates that the species appears in a relatively large number of quarters. Consequently, if the
relative density is high and the relative frequency is low, then the species must appear in lots of
quarters but only at a few points, that is, the species appears in clumps. If both are high, the
distribution is relatively even and relatively common along the transect. If the relative density
is low (appears in few quarters) and the relative frequency is high(er), then the species must
be sparsely distributed (few plants, no clumping).

The Importance Value of a Species

The importance value of a species is defined as the sum of the three relative measures:

Importance value = Relative density + Relative cover + Relative frequency. (H.9)
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The importance value gives equal weight to the three factors of relative density, cover, and
frequency. This means that small trees (that is, with small basal area) can be dominant only
if there are enough of them widely distributed across the transect. The importance value can
range from 0 to 300.

For the data in Table H.1, even though eucalypti are not very common, because of their
size they turn out to be the most important species within the community.

TABLE H.9. The importance value of each species.

Species Relative Density Relative Cover Relative Frequency Importance

Acacia 40.0 3.0 33.3 76.3
Eucalyptus 20.0 80.7 25.0 125.7

Casuarina 25.0 11.2 25.0 61.2

Callitris 15.0 5.1 16.7 36.8

Comment. Each of the measures that make up relative importance may be calculated without
knowing the absolute density of the trees at the site (review (H.5), (H.6), and (H.8).) In fact,
any estimate for the absolute density of all species leads to the same relative densities for
each species. Consequently, the actual value of density of the plot is not needed to determine
relative importance. However, in most studies, absolute density is one the parameters of greatest
interest. Because of this, there have been a number of different methods to estimate absolute
density from point-centered quarter method data proposed in the literature. In the next section
we explore one of these. Whichever method is used, relative importance is unaffected.

It has been shown by Pollard (1971) that the estimate of Cottam and Curtis (1956) of λ in
(H.3) is biased.3 Nonetheless, this estimate appears widely in the literature and, so, has been
used here. Another drawback of the estimate in (H.3) is that no confidence limits are available
for it. The next section addresses both of these issues.

Population Density Reconsidered

Pollard (1971) and Seber (1982) derived an unbiased estimate of the absolute population density
using point-centered quarter method data that we now present. It also has the advantage that
it can be used to determine confidence intervals for the density estimate.

Intuition

The discussion that follows is meant to inform our intuition and by no means constitutes a
proof of any of the results, which requires a substantially more sophisticated argument. See
(Mitchell, 2007) for further details).

The assumption of this model is that trees are randomly distributed in the survey area. Now
think of the random points along the transect as representing “virtual trees”. The measured
distance Rij is a nearest neighbor distance from a virtual to a real tree. As such, it is an
estimate of the actual mean nearest neighbor tree-to-tree distance.

3Pollard (1971) states that the reason for this is Cottam and Curtis (1956) chose to estimate the mean area
A occupied by a tree as the reciprocal of λ. Rather then estimate A directly, as we saw in (H.3) they estimated
r̄, which is the reciprocal of the square root of A. Squaring and inverting leads to a biased estimate of A.
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If an actual tree-to-tree distance were r meters, we could draw circles of radius r/2 centered
at each tree. See Figure H.3. Notice that the circles would not overlap and that only one tree
would lie in each circle.
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FIGURE H.3. When trees are r units apart, circles
of radius r/2 centered at each tree do not overlap
and only one tree would lies in each circle.

The area of each circle is π(r/2)2 = πr2/4 m2. Since there is exactly 1 tree per circle and
since the circles don’t overlap, the density is 1 tree per πr2/4 m2, or equivalently,

4

πr2
trees/m2.

The observed point-to-tree distances Rij are the estimates of the actual distances. So
π(Rij/2)2 = πR2

ij/4 m2 is an estimate of the sample mean area of a circle occupied by a single
organism. Using the 4n area estimates along the transect, an unbiased estimate of the mean
area occupied by an organism is∑n

i=1

∑4
j=1

πR2
ij

4

4n− 1
=
π
∑n

i=1

∑4
j=1R

2
ij

4(4n− 1)
.

Note: For this estimate to be unbiased, the denominator is one less than the actual number of
observations, that is, 4n− 1. The density is the reciprocal of the mean circular area.

FORMULA H.1. An unbiased estimate of the population density λ is given by

λ̂ =
4(4n− 1)

π
∑n
i=1

∑4
j=1R

2
ij

,

where the units are typically items/m2. Multiplying by 10, 000 yields trees/ha. The variance is given by

Var(λ̂) =
λ̂2

4n− 2
.

EXAMPLE H.4. Reanalyze the data in Table H.1 by calculating λ using Formula H.1.

SOLUTION. First we determine

n∑
i=1

4∑
j=1

R2
ij = (1.1)2 + (1.6)2 + · · ·+ (1.7)2 = 100.71.

Unlike in (H.3), remember to square the distances first, then sum. The density estimate is

10, 000λ̂ = 10, 000 · 4(4n− 1)

π
∑n
i=1

∑4
j=1R

2
ij

=
10, 000(4(20− 1))

100.71π
= 2402 trees/ha.

This estimate is about 1% higher than the earlier biased estimate of 2380.
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Confidence Intervals

Confidence interval estimates for λ may be calculated in the following way.

FORMULA H.2. For n > 7, the endpoints of a confidence interval at the (1 − α)100% level are
determined by

lower endpoint: λ =

(
zα

2
+
√

16n− 1
)2

π
∑n
i=1

∑4
j=1R

2
ij

and

upper endpoint: λ =

(
z1−α2 +

√
16n− 1

)2
π
∑n
i=1

∑4
j=1R

2
ij

,

where zβ is the standard normal z-value corresponding to probability β.

EXAMPLE H.5. The following data were collected at Lamington National Park in 1994. The
data are the nearest point-to-tree distances for each of four quarters at 15 points along a 200
meter transect. The measurements are in meters. Estimate the tree density and find a 95%
confidence interval for the mean.

Point I II III IV

1 1.5 1.2 2.3 1.9
2 3.3 0.7 2.5 2.0

3 3.3 2.3 2.3 2.4

4 1.8 3.4 1.0 4.3
5 0.9 0.9 2.9 1.4

6 2.0 1.3 1.0 0.7

7 0.7 2.0 2.7 2.5
8 2.6 4.8 1.1 1.2

9 1.0 2.5 1.9 1.1

10 1.6 0.7 3.4 3.2
11 1.8 1.0 1.4 3.6

12 4.2 0.6 3.2 2.6
13 4.1 3.9 0.2 2.0

14 1.7 4.2 4.0 1.1

15 1.8 2.2 1.2 2.8

SOLUTION. In this example, the number of points is n = 15 and the number of samples is
4n = 60. Therefore, the density estimate is

λ̂ =
4(4n− 1)

π

n∑
i=1

4∑
j=1

R2
ij

=
4(59)

347.63π
= 0.2161 trees/m2.

Since the number of points is greater than 7, confidence intervals may be calculated using
Formula H.2. To find a 1 − α = 0.95 confidence interval, we have α = 0.05 and so z1−α2 =
z0.975 = 1.96 and z0.025 = −z0.975 = −1.96. The lower endpoint of the confidence interval is(

z0.025 +
√

16n− 1
)2

π
∑n
i=1

∑4
j=1R

2
ij

=

(
−1.96 +

√
16(15)− 1

)2
347.63π

= 0.1669

and the upper endpoint is(
z0.975 +

√
16n− 1

)2
π
∑n
i=1

∑4
j=1R

2
ij

=

(
1.96 +

√
16(15)− 1

)2
347.63π

= 0.2778.
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Therefore, the confidence interval for the density is

(0.1669, 0.2778) trees/m
2
.

Using Formula H.1, the point estimate for the density4

λ̂ =
4(4n− 1)

π
∑n
i=1

∑4
j=1R

2
ij

=
4(60− 1)√

347.63π
= 0.2161 trees/ha

The units are changed to hectares by multiplying by 10, 000. Thus, λ̂ = 2161 trees/ha while the
confidence interval is (1669, 2778) trees/ha.

Cautions

The estimates and confidence intervals for density assume that the points along the transect are
spread out sufficiently so that no organism is sampled in more than one quarter. Further, the
density estimate assumes that the spatial distribution of the organisms is completely random.
For example, it would be inappropriate to use these methods in an orchard or woodlot where
the trees had been planted in rows.

H.3 Diversity Indices

There are three reasons why ecologists are interested in ecological diversity and its
measurement. First, despite changing fashions and preoccupations, diversity has re-
mained a central theme in ecology. The well documented patterns of spatial and tem-
poral variation in diversity intrigued the early investigators of the natural world. . .
Second, measures of diversity are frequently seen as indicators of the wellbeing of
ecological systems. Thirdly, considerable debate surrounds the measurement of di-
versity.

Anne E. Magurran

The concept of species diversity and its measurement is a hotly contested one. There are
many reasons for this, but a basic one is that diversity has two distinct components: (1) the
total number of species in the community and (2) evenness—how the abundance data are
distributed among the various species. Some diversity indices try to measure both components
with a single number, which leads to confusion. Adding to this confusion, there are nearly
as many diversity indices as there are studies of ecological diversity. Researchers adapt and
modify existing measures to better capture the notion of diversity in their particular context.
This makes comparisons between studies difficult. Despite these problems, diversity measures
are widely used and these notes give a description of a couple of the more common ones. Do not
take these measures as definitive. They are just a starting point! Be aware of their limitations.

The Components of Diversity

As noted, species diversity is usually thought of as being comprised of two components. The
first is the number of species in the ecological community. Ecologists often refer to this as
species richness. The more species a community supports, the richer and more diverse it
will be. But it is clear that richness, alone, does not capture the notion of diversity. A simple
example shows why.

4Instead, if (H.3) were used, the density estimate would be quite similar, 2205 trees/ha.
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EXAMPLE H.6. 100 individual trees were sampled at two locations with the results shown in
the table below. What is the richness at each location? What about “diversity”?

Species Location I Location II

Acacia 97 25

Eucalyptus 1 25
Casuarina 1 25

Callitris 1 25

Total 100 100

SOLUTION. The richness is the same in both locations since four different species were ob-
served. But ecologists would say that the diversity at the second location is much higher than in
the first. Intuitively you can see why this is the case. If you walked around at the first location,
you might not see anything other than Acacia. There is almost no diversity. While at the second
location, all four species are likely to be seen.

The way in which the number of individuals is distributed among the various species in
a community is the second major component of species diversity. This is often referred to
as species evenness or equitability. The more equitable the distribution, the higher the
diversity. Location II in Example H.6 has a much higher evenness than location I. Because
location II has the same richness but a more equitable distribution than location I, it has a
higher overall diversity. But how do you compare communities with different numbers of species
and different relative abundances?

EXAMPLE H.7. 100 samples were taken at two more locations with results recorded below.
At which location were trees more diverse?

Species Location III Location IV

Acacia 50 75

Eucalyptus 25 10

Casuarina 25 10
Callitris 5

Total 100 100

Do you see the difficulty? Location IV is “richer” since it has 4 species while location III
has only 3. But location III has greater “evenness.” So which is more diverse?

There are richness and evenness indices and also diversity indices that attempt to capture
both of these components. The major criticism of all diversity indices is that they combine (and
hence confound) a number of variables that characterize an ecological community. Nonetheless,
Example H.7 shows why ecologists have need for such indices.

Richness

Species richness—what could be simpler? You might think that the index of species richness
would be S, the total number of species in the community. However, S depends on the searching
effort made, that is, the sample size, the area sampled, and the time spent. Several indices have
been proposed to measure species richness that are independent of the sample size, n. Two
well-known indices are Margalef’s index

R1 =
S − 1

lnn
,
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and Menhinick’s index

R2 =
S√
n
.

These indices are supposed to provide roughly constant values for a particular community no
matter what sample size is used. While both are helpful when used properly, both also pose
some difficulties. The main problem is that each presumes a particular sort of relationship
between the number of species observed and the number of individuals sampled. This is easiest
to see in the Menhinick index, which assumes that S = k

√
n for some constant k. This may be

true in some communities, but if it is not, then R2 will vary with sample size.

An alternative to richness indices is to use the direct count of species numbers in samples of
equal size. Not only is this simple, it avoids the problems alluded to in the previous paragraph.
For those field exercises at sites where we are attempting to measure species diversity, try to
use the same sample size. Corrections using a statistical technique called rarefaction may be
used to adjust for different sample sizes, but let’s avoid such complications!

Diversity

The Shannon Index H has been one of the most widely used diversity indices in ecology. It is
based on information theory.5 H measures the average degree of “uncertainty” in predicting the
species to which an individual chosen at random will belong.6 Think about Example H.6 again.
Notice that the uncertainty in guessing an individual’s species increases as the distribution
becomes more even. In the first community there is almost no uncertainty. You can “bet on”
the individual being an Acacia. In the second community, the uncertainty is maximized. Each
species is equally likely since each comprises 25% of the sample. Also notice that as the number
of species in a community increases, the more uncertain one is when guessing the species of a
particular individual, at least if the distributions are relatively even.

The formula for the Shannon index is based on the proportion of each species in the sample.
Let ni denote the number of individuals of the i-th species in the sample. Then pi = ni/n is
the proportion of sample that is composed of the i-th species. The Shannon index is defined
as

H = −
S∑
i=1

pilog2pi.

Shannon used base 2 logarithms because the notion of uncertainty he was investigating was
easier to understand when base 2 logs were used. However, some authors use natural logarithms
or common logarithms because they are found on calculators. Such answers can be converted
to base 2 logarithms. If natural logarithms are used, simply divide the final answer by ln 2 to
obtain the base 2 result. If common (base 10) logarithms are used, divide the final answer by
log 2 to obtain the base 2 result.

The Shannon index has two nice properties: (1) H = 0 if and only if all individuals in the
sample are of the same species and (2) for a given number S of species, H has a maximum
value of log2S. This maximum is achieved only when each species has the same number of
individuals, that is, in a perfectly even distribution. The first property is “obvious” if you use

5Claude Shannon was a researcher for Bell labs and was interested in the amount of information that could
be transmitted in various formats.

6H is the number of “yes/no” questions required on average to guess the species to which the individual
belongs, at least if base 2 logarithms are used in the definition of H.
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S = 1 and p1 = 1 in the formula for H. The second property can be proven using the Mean
Value Theorem from calculus (Mitchell and Kolmes, 1990).

EXAMPLE H.8. Compute the Shannon index for the two locations in Example H.6.

SOLUTION. For location I, the proportions are p1 = 0.97 and p2 = p3 = p4 = 0.01. If we use
natural logs to do the calculations, then

H = −
∑S
i=1 pi ln pi

ln 2

= −0.97 ln 0.97 + 3(0.01 ln 0.01)

ln 2

= −−0.02955− 3(0.04605)

0.69315
= 0.242.

For location II, the proportions are p1 = p2 = p3 = p4 = 0.25. So

H = −
∑S
i=1 pi ln pi

ln 2
= −4(0.25 ln 0.25)

ln 2
= 2.000.

Notice that the uncertainty and hence the diversity of location II is much higher, which matches
our intuition. We noted earlier that H achieves its maximum value of log2S when the distribution
is perfectly even, as it is here. Notice that log2S = log24 = 2, which is the value of H for
location II.

Evenness

When all species in a sample are equally abundant, a measure of evenness should be at its
maximum. H is maximized for a fixed value of S when the distribution of individuals is even
across all species. This means that it can be used as a basis for an evenness index. The following
index is among the most common used by ecologists,7

E =
H

log2S
.

E expresses H as a proportion of its maximum possible value, log2S. Thus, the range of
values for E is from 0, when all individuals are of one species, to 1, when all species are evenly
represented.

When base 2 logs are unavailable, E can be “corrected” in the same way that H was. For
example, when using natural logarithms

E =
H

log2S
=

H
lnS
ln 2

.

But in this case, a correction already will have been required to compute H. The two corrections
actually cancel each other and so E can be calculated more simply as

E = −
∑S

i=1 pi ln pi
lnS

.

7This index is sometimes referred to as Pielou’s J ′ index.
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EXAMPLE H.9. Calculate the evenness E for the two locations in Example H.6.

SOLUTION. For location I, we calculated that H = 0.242 So

E =
H

log2S
=

H
lnS
ln 2

=
0.242
ln 4
ln 2

= 0.121.

For location II, H = 2.000, so

E =
H

log2S
=

2

log24
=

2

2
= 1.0,

which is the maximum possible evenness.

Applications to Ecological Diversity

The most common biological application of information theory is in the quantification of eco-
logical diversity. When an ecosystem possesses numerous plant and animal species, with many
of them present in relatively high numbers, it will have a high H value and a high E value.
An ecosystem with fewer types of organisms present, or with only a few common plant or
animal species, will concomitantly have lower H or lower E values. We generally think of
healthy biological communities in favorable habitats as being highly diverse. Decreased biologi-
cal diversity might be due to harsher environmental conditions (desert versus a temperate zone
forest) or to stresses upon a biological community (acid rain or pesticides), which eliminate
susceptible species from the natural mix. Information theory measures allow us to quantify
both stress-induced and natural differences between ecosystems in their biological diversity.

Even natural changes in the diversity of an ecosystem can be quite dramatic. Twice in the
last twenty years there have been major infestations of the crown of thorns starfish, Acanthaster
planci, on the Great Barrier Reef. The crown of thorns attacks certain species of corals that
build and maintain the reef. In some areas as much as 98% of the coral is dead, though it is
not clear whether the crown of thorns is responsible for all of this destruction. Initially marine
ecologists in Australia were alarmed by these infestations. However, opinion is now beginning
to shift.

Not only do some experts think the coral can recover from the crown of thorns. Some
marine scientists also think it might be good for the reef to go through such growing
pains. Their argument is essentially that the crown of thorns, like a renovator, may
make a terrible mess on the way toward home improvements in the longer term. In
particular, the crown of thorns cuts down the dominant species of coral and thus
makes room for other species, currently crowded out, the upshot being a more diverse
group of corals. Biologists have known for a long time that the starfish in temperate
waters, by eating common things like mussels, clear out space for other species, and
the same kind of benefits, they argue, may accrue from the “destruction” caused by
the crown of thorns. [Ford 1988, 51]

Measuring changes in the diversity of an ecosystem are important, as the example above
indicates. An H value can be computed for all of the organisms present in an environment,
or for specific types of organisms such as trees or insects. Because the presence of uncommon
species in nature can make information theory measures sensitive to the sizes of data sets (in
general only very large sets will contain representatives of all the rare species), it is important
to collect similar-sized data sets for comparisons of biological diversity.
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Tree Species Diversity

Habitats of the sandhill complex type have fairly simple mature tree communities (H = 0.97)
compared to an area of sand pine scrub (H = 1.55). The most complex mature tree community
is the climax southern mixed hardwoods (H = 2.56) into which the other forest types listed
change very slowly by a process known as ecological succession. Information theory measures
do distinguish between these different natural communities. Table H.10 contains H values for
mature trees found in different types of forests in Florida [Monk, 1967].

TABLE H.10. H values for trees in plant communi-
ties in Florida (from [Monk 1967, 175])

Community H of Mature Trees

Sandhill Complex 0.97

Cypress Heads 1.16
Sand Pine Scrub 1.55

Mixed Hardwood Swamps 2.28

Climax Southern Mixed Hardwoods 2.56

Bird Species Diversity

Ornithologists have noted that more types of birds are present breeding in woodlands than in
fields of similar sizes. MacArthur and MacArthur (1961) used first-order diversity measures to
investigate the relationship between bird diversity and vegetation. They measured H values
for the diversities of bird species breeding at 11 deciduous woodland locations in Pennsylvania,
Vermont, and Maryland. In the same habitats they measured various aspects of the vegetation
in order to look for any plant community characteristics that were strongly correlated with bird
species diversities.

Plant species diversities were computed by using H values (see Table H.11). Foliage height
diversities, which expressed the number of layers of leaves between the ground and the sky in
different woodlands, were also measured. Zones of 0 to 2 feet, 2 to 25 feet, and greater than 25
feet above the ground were used as height categories. The number of leaves above points on the
ground were estimated for each height zone, and H values for the foliage height diversity were
then calculated. When the number of leaves above the ground in the three height zones are
more nearly equal, the foliage height diversity measure increases to reflect the more complex
physical environment.

The simplest model of how birds select a nesting habitat would be that as either foliage
height diversity or plant species diversity increased, the attractiveness of the habitat would
increase linearly. MacArthur and MacArthur (1961) looked to see whether one of these simple
predictive relationships existed. Bird species diversity and foliage height diversity values were
strongly correlated to one another. Figure H.4 shows this correlation as a linear relationship.
The data closely approximate the line given by the equation:

bird species diversity = 2.01× foliage height diversity + 0.46 .

On the basis of this linear relationship, birds appear to be selecting nesting habitats on the
basis of foliage height diversities. Interestingly, there was a much weaker relationship between
bird species diversity and plant species diversity measures [MacArthur and MacArthur 1961].
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TABLE H.11. Bird species diversity (BSD), foliage
height diversity (FHD), and plant species diver-
sity (PSD) at 11 different locations. Adapted from
[MacArthur and MacArthur 1961, 596]

Site BSD FHD PSD

A 0.639 0.043 0.972

B 1.266 0.448 1.911

C 2.265 0.745 2.344
D 2.403 0.943 1.768

E 1.721 0.731 1.372

F 2.739 1.009 2.503
G 1.332 0.577 1.367

H 2.285 0.859 1.776

I 2.277 1.021 2.464
J 2.127 0.825 2.176

K 2.567 1.093 2.816

The plot of bird species diversity versus plant species diversity is considerably less linear than
the plot using foliage height diversity. The physical structure of the woodlands, in terms of the
leaves present in different height zones, seemed to matter more to the birds than the species of
plants producing those physical structures.
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FIGURE H.4. Bird species diversity (BSD) plotted against foliage height
diversity (FHD) and against plant species diversity (PSD). Adapted from
[MacArthur and MacArthur 1961, 596].

Fire Ant Odor Trails

Fire ants of the species Solenopsis saevissima are social insects that live in underground nests
containing many sterile workers and their queen. To obtain food, workers set forth from the
nest and search the surrounding area. If a worker finds a food source large enough for a number
of ants to harvest, a communication system based upon odor trails allows additional ants to be
recruited [Wilson 1962].
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To produce an odor trail, a worker returning to the nest periodically drags its sting along
the ground while releasing a chemical produced by Dufour’s gland through the extruded sting.
The chemical released is attractive to other workers, and causes them to follow the odor trail
towards the food. A truly abundant food source eventually produces a situation where many
ants returning from the food to the nest have been excited into producing an odor trail, and the
summed individual odor trails produces a virtual chemical “highway” leading to the food. The
chemical secreted from Dufour’s gland fades slowly over time, so that a depleted food source
loses its attractiveness.

In the absence of any odor trail, a foraging worker leaving a fire ant nest might be expected
to depart without bias towards any particular direction, that is, in any one of the 360◦ of
directions that surround the nest. If we denote the diversity of directions that a departing
group of ants might be expected to display in this uninformed initial circumstance by Hi, then

Hi = log2360

where every 1 degree of direction is taken as a potential direction category.
If an ant odor trail to a food source exists, then the departing ants might be expected to

leave from their nest in a smaller angular range of directions. If the smaller diversity of this
range of directions is symbolized by Hs, then the transmission of information by the odor trail,
denoted Ht, must be equal to the difference between the diversity of the array of departure
directions displayed by the informed and the uninformed groups of ants. That is,

Ht = Hi −Hs.

Using a small drop of sugar solution placed on an index card as a food source, Wilson [1962]
measured the direction indicated by the odor trail produced by a single fire ant and its influence
upon the directions in which recruited foragers travelled from their nest. After this procedure
was carried out a number of times to obtain replicate data sets, an estimate of the information
transmitted by fire ant odor trails could be made.8

The results of the fire ant study showed a considerable amount of information transmission
by the odor trails (see Table H.12). When food sources were placed at between 20mm and
100mm from an ant nest, the range of directional information transmitted by odor trails proved
to be between 3 and 5 bits.

TABLE H.12. The amount of directional informa-
tion transmitted to single workers by a single fire
ant odor trail (adapted from [Wilson 1962, 152])

Target range (mm) Ht

20 2.81
50 4.11

100 5.10

We can interpret one bit of information in this context in the following way. If a foraging
ant could only inform another worker that a food source was either to the north or the south

8Hs can either be measured by observing the distribution of directions by which ants depart from their nest
and counting the number of ants in each degree-category, or by considering the data to be a normally distributed
one-dimensional Gaussian distribution and applying the formula Hs = log2

√
2πe σ where σ is the standard

deviation. See Haldane and Spurway [1954] or Wilson [1962] for more details concerning the latter approach.
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of the nest, there would be only two directional choices, so H1max = Hi = log22 = 1. If the
communication that took place was perfect and the second worker always went in the correct
direction, then Hs = 1log21 = 0. In this simple situation,

Ht = Hi −Hs = 1.

Now assume the foraging ant could perfectly transmit the information as to whether the food
source was to the north, east, south, or west, then Hi = log24 = 2 bits since there are now
four directional categories. In the same manner, we can interpret the 3 to 5 bits of information
conveyed by the foraging ants in this experiment. The 3 to 5 bits of information transmitted
is equivalent to every departing forager being told what direction to walk and being equipped
with a tiny compass upon which are marked between 23 = 8 and 25 = 32 directional points.
Departing foragers given such equipment, and able to use it well, would be able to depart in a
given direction as accurately as departing ants using an odor trail rather than a tiny compass
as their guide [Wilson 1962, 154].

The main reason for converting the actual field data regarding trail communication into
abstract “bits of information” is that it allows us to compare the very different communication
systems employed by a wide range of insects and animals. For example, it allows us to compare
the information conveyed by a honey bee’s waggle dance with the information conveyed by a
fire ant’s odor trail.

A foraging honey bee that has located a rich source of nectar and pollen will perform a
waggle dance upon its return to its hive. The dance allows the other bees to find the food
source. The waggle dance looks rather like a “figure-8” performed upon a vertical surface
inside the hive. Its interpretation involves both the orientation of the dance and its pace. The
direction to a food source is encoded by the angle that the figure-8 deviates from the vertical.
The distance to the food source is encoded by the number of turns per minute that a dancing
bee performs. Haldane and Spurway [1954] analyzed the information transmitted by dancing
bees to other foragers in a fashion similar to the one already described for fire ants. The honey
bee data was quite similar to that gathered by Wilson [1962] for fire ants. Honey bees transmit
between 2.5 and 4.0 bits of directional information in their waggle dance. Both types of social
insects are quite good at directing nestmates to food sources, although the methods they use
to communicate with each other differ dramatically.

H.4 Problems

1. The following data were collected in interior Alaska. The data are the nearest point-to-tree distances
in meters for each of four quarters at the first 25 points of 724 sample points. All trees were black
spruce, Picea mariana. Estimate the tree density and find a 95% confidence interval for the mean.
(Data reported in: Hollingsworth, T. 2005. Point-center quarter method black spruce heights, diam-
eter, and location for 150 mature black spruce sites in interior Alaska. LTER Database:BNZD:138.
www.lter.uaf.edu/ascii/files138_pcqbs_ht_diam.txt. NSF awards DEB-0080609, 9810217,
9211769, 8702629 and USDA Forest Service, Pacific Northwest Research Station RJVA-PNW-01-
JV-11261952-231.)

2. The following data were collected at Lamington National Park in 1994 by another group of students.
The data are the nearest point-to-tree distances for each of four quarters at 14 points along a two-
hundred meter transect. The measurements are in meters. Estimate the tree density and find a 95%
confidence interval for the mean.
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Point I II III IV Point I II III IV

1 7.7 2.2 1.4 1.6 14 1.2 1.1 1.0 1.4
2 0.97 1.2 1.4 1.5 15 0.5 0.7 0.9 1.1
3 1.4 1.4 1.8 1.6 16 0.52 0.85 0.82 2.1
4 1.7 2.5 2.2 1.8 17 0.51 0.46 1.6 1.1

5 0.77 1.2 1.0 1.2 18 0.46 0.9 1.7 0.65
6 0.38 0.64 1.84 1.7 19 0.35 0.64 0.98 0.53
7 0.45 0.6 0.55 0.62 20 0.98 1.3 2.1 1.6

8 0.15 0.14 0.96 0.9 21 0.35 0.5 0.25 1.0
9 0.39 0.5 0.57 0.88 22 0.4 0.4 0.6 0.8

10 0.72 0.73 0.45 0.75 23 0.6 1.5 1.3 1.1

11 0.35 1.1 0.45 1.1 24 0.4 0.5 0.9 0.8
12 0.55 0.9 0.65 0.9 25 0.5 1.1 2.1 1.1
13 0.8 0.7 0.8 0.9

I II III IV I II III IV

0.6 1.4 3.6 2.0 3.4 3.4 2.9 2.6

0.6 0.9 3.2 1.8 1.7 3.2 2.7 4.2

2.0 3.9 1.8 2.2 3.8 4.2 3.2 4.4
4.1 7.0 1.6 4.0 1.8 1.1 4.3 3.4

3.2 2.0 1.0 3.8 2.8 0.9 2.7 2.3

2.8 3.3 1.3 0.8 1.4 5.0 4.5 2.7
3.1 1.9 2.9 3.4 2.0 0.2 3.0 4.0

3. Calculate H and E for the two locations in Example H.7.

4. Here are three data sets on the distribution of bird species in low and high altitude forests in the
northeastern region of New South Wales. These data are for less common bird species. They were
recorded in a 15 hour “area search” in each sampling area during the breeding season (W. S. Osborne,
The Rainforest Legacy, p. 222). Birds were observed in four different forest habitats including the
two recorded here: low altitude subtropical rain forest (LASRF) and high altitude subtropical rain
forest (HASRF). The birds were classified into three general groups: canopy feeders, ground feeders,
and others.

(a) Calculate the species richness S, diversity H, and evenness E for ground feeding birds in high
and low altitude subtropical rainforests and interpret the results.

Ground Feeders LASRF HASRF

Brush turkey 46 6
Wonga pigeon 1 7
Emerald fruit dove 6 3

Noisy pitta 4 6

Superb lyrebird 3 71
White’s thrush 9 17

Logrunner 9 26

(b) Calculate the species richness S, diversity H, and evenness E for canopy feeding birds.
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Canopy Feeders LASRF HASRF

Wampoo fruit-dove 48 1

Topknot pigeon 25 2
Rainbow lorikeet 1 7

Sulphur-crested cockatoo 8

Satin bowerbird 30 17
Figbird 10

(c) Carry out the same exercise for “other” birds.

Others LASRF HASRF

White-headed pigeon 2 1
Brown cuckoo dove 1 3

Yellow-tailed black cockatoo 1

Australian king parrot 8 3
Crimson rosella 4 26

Laughing kookaburra 2 3

Green catbird 23 24
Paradise riflebird 4

Pied currawong 6 7

(d) Which forest/feeding combination exhibits the highest diversity? Explain.

5. Honey bees perform tasks inside the hive when they are newly-emerged workers, and switch to
collecting nectar and pollen from flowers later in their lives. Numerous studies of honey bee behavior
have revealed that the tasks they perform inside the hive are quite varied and complex. The data
in below show all of the behavioral patterns recorded for three worker bees that represent a very
small part of the group observed in an experiment [Kolmes 1985]. Although three bees is too small
a group from which to draw any conclusions, we can still get a sense of the diversity of behavior
patterns.

Behavior Bee 1 Bee 2 Bee 3

Walk 9 7 8
Stand 7 7 2

Groom Self 4 7 5
Inspect/Feed 1 1 2

Into Empty Cell 2 5 1

Into Honey Cell 0 1 0
Into Pollen Cell 0 1 0

Build Comb 0 3 0
Groom Other Bee 0 0 4
Get Groomed 0 0 1

Get Fed 0 0 1

DVAV 1 0 0
Attend Dance 3 0 0

Antennate 2 2 0
Chew Hive 1 0 0
Fan 1 2 0

(a) Determine the diversity of the behaviors, H, for each of the three bees.

(b) Determine the evenness measure, E, of the behaviors for each of the three bees.
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6. Before settlement by Europeans, the Great Lakes Region of the United States was covered by a
vast pine forest. Recent studies of these vanished forest areas have relied upon modern analysis of
data collected during the General Land office survey of Michigan carried out in the 1800s [Whitney
1986]. The data in below show the percentage of trees reported as “bearing trees” by surveyors in
two different habitats in Northern Michigan, sometime between 1836 and 1859 [Whitney 1986].

Species Swamps Uplands

Balsam fir 1.7 0.0
Red maple 1.6 2.6

Sugar maple 0.1 3.0

Yellow birch 0.5 0.0
White birch 2.9 0.4

Birch 2.5 0.8
Beech 0.2 17.2

White ash 0.7 0.0

Black ash 3.6 0.0
Tamarack 29.7 0.0

Spruce 10.6 0.0

Pitch pine 1.7 10.9
Norway pine 1.1 25.7

Pine 1.5 7.5

White pine 7.6 12.7
Poplar 3.8 2.2

White oak 0.0 5.7

Black oak 0.0 3.4
Cedar 25.2 0.0

Hemlock 3.2 7.3

Elm 1.0 0.1
Miscellaneous 0.8 0.5

(a) Determine the diversity of the tree species, H, for each of the two habitats in Northern Michigan.

(b) Determine the measure of evenness, E, of the tree species for each of the two areas.

7. The data below show how responsive different female white-crowned sparrows, Zonotrichia leu-
cophrys, were to the recorded courtship songs of male sparrows of two species which had been raised
in the laboratory. Responses to their own species are in the top row and responses to a related
species, Melospiza melodia (song sparrow), are in the bottom row. Animal communication must
follow predictable patterns for it to be effective, so we might expect a more consistent response by
female sparrows to appropriate (same species) male songs than to inappropriate (different species)
male courtship songs. Information theory measures are one way of addressing how consistently
a group of experimental animals responds to different stimuli. Adapted from [Spitler-Nabors and
Baker 1987, 383].

Female a b c d e f g h i j k l m

W-CS 1 4 10 1 4 20 1 1 1 7 14 1 3
SS 2 0 10 0 0 14 27 0 0 0 10 0 4

(a) Determine which of the laboratory-raised male sparrow’s (W-CS or SS) elicited a more diverse
response from the thirteen female white-crowned sparrows.

(b) From just looking at the data do you expect the evenness to be high or low for the song sparrows?
Calculate the evenness for each data set. What might this mean biologically?
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8. The Aldabra tortoise, Geochelone gigantea, is a large tortoise endemic to the Aldabra Atoll in the
Seychelles in the Indian Ocean. Adult males have a carapace length of more than 100 cm and may
weigh 250 kg while the females have a carapace length in excess of 90 cm carapace and weigh 159 kg.
The thick carapace is brownish gray and highly domed. Among the tortoises, this species is second
only in size to the slightly larger species found on the Galapagos Islands. Life span is believed to
surpass 100 years.

A survey was conducted to estimate the population of Aldabra tortoises on Aldabra atoll. Ini-
tially 4214 tortoises were marked. In a second survey, 3701 were located with 221 being recaptures.
Find the estimated population size and its 95% confidence limits. [Morgan, D. D. V. and Bourn,
D. M. 1981. A comparison of two methods of estimating the size of a population of giant tortoises
on Aldabra. J. Applied Ecology. 37–40.]

9. The striped bass, Morone saxatilis, is a highly prized sportfish and is widely stocked in the eastern
United States. A mark and recapture study was conducted in the Delaware River to estimate
population size of age-0 striped bass. Approximately 95,000 hatchery-reared fish were marked with
wire tags and released at multiple locations within the nursery area along the river.

(a) Recapture efforts yielded 53 tagged fish. If the total population was estimated to be N̂ = 975, 100,
how many age-0 striped bass were caught (C) during the recapture process?

(b) Find 95% confidence limits for the population.

10. Using aerial photography, a population of humpback whales, Megaptera novaeangliae, in the Gulf
of Maine off Nova Scotia were “marked.” A total of 27 were photographically recorded. A second
survey in the same area captured 29 individuals, with 9 being recaptures. Estimate the population
size and find 95% confidence limits.

11. Commercial sport fishing guides have expressed concern over the status of the rainbow trout, On-
corhynchus mykiss, population along the Kanektok River in Alaska. A study was conducted to
estimate the trout population in this area. 400 trout were tagged and released. An estimated 7600
trout were subsequently caught by anglers later in the season with 110 of these being recaptures.

(a) Estimate the population size and find 95% confidence limits.

(b) Which assumptions of Petersen model were likely violated by this study?

12. The introduced feral goat, Capra hircus, occurs in all states and territories of Australia except the
Northern Territory. The total has thought to exceed 2.5 million, with the greatest concentrations
occurring in western New South Wales, southern Queensland, central eastern South Australia and
Western Australia. Feral goats occur in a wide range of habitats, though they do not do well in
deserts or wet tropical areas where dingoes are present.

Feral goats are a major environmental and agricultural pest. They compete with sheep for pas-
ture and also cause land degradation through soil damage, overgrazing pasture plants and browsing
established trees and shrubs preventing their regeneration.

In one study in a 234 square kilometer area of sheep range in South Australia, 96 goats were
tagged and 1829 goats were later sighted. Estimate the population size and find 95% confidence
limits. [Parkes, J., Henzell, R., and Pickles, G. Managing vertebrate pests: Feral goats. Australian
Government Publishing Service. www.affa.gov.au/corporate_docs/publications/word/rural_

science/lms/ferals/goatguide.doc]
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TABLE H.13. Table of 2025 Random Digits.

1 60082 84894 87580 22864 25331 54562 44686 40649 51483

2 22224 12938 28165 75805 68172 80673 17717 53236 68851

3 60285 32511 72012 82652 34342 78292 76543 20885 73190
4 88812 28748 21729 61863 68489 21822 56358 52501 89453

5 44576 55744 46672 14593 64783 37256 93146 88197 76405

6 28890 23523 93040 14691 29545 74989 95987 28891 21203
7 33248 36833 92299 67498 42777 26268 17589 92760 46627

8 6486 93538 12667 83088 4615 65794 66354 60781 84674
9 17475 62049 17297 39937 65459 75082 78141 12139 89131

10 15274 37983 98317 94216 67221 93399 85141 77546 67711

11 68879 51475 98386 75048 29674 75489 12385 5994 63650
12 83496 72984 23660 95481 60220 39281 58264 52018 27812

13 26744 36792 72255 76361 19424 98679 36742 18622 19857

14 62711 87719 67049 44892 52839 15490 46973 74915 46364
15 31414 85454 16495 40617 2926 45817 96356 52240 47116

16 34554 98863 34967 85013 27775 14375 89156 21919 76635

17 95462 96714 49735 87824 97419 33554 17134 49235 97579
18 48093 46752 93317 37664 45035 72983 80716 30263 64913

19 60969 95257 40274 60833 74771 73456 27750 10135 49899

20 1096 16749 75350 87705 72326 68094 23155 91453 74633

21 39062 42448 18988 93694 57797 34517 10748 74680 21585

22 88966 87249 77126 1433 94406 15789 7692 17558 33372
23 55472 54559 42499 98779 34668 77150 4338 70459 31650

24 77115 91315 70052 14534 76386 18211 42522 31774 52762

25 68296 65967 27859 36237 3758 2576 31417 79768 23853

26 11891 92132 43614 25173 37475 92684 7525 12754 52073

27 67845 41815 87539 63773 33269 96363 83893 13684 54758

28 80715 3333 36746 42279 63932 91413 13015 45479 96152
29 93614 88328 22103 21134 73295 22175 46254 11747 36284

30 28017 18124 61320 52542 35362 27681 58562 53691 96599

31 95114 73345 78448 17128 94266 82197 10938 42871 39309
32 29631 61790 17394 87012 80142 12916 43588 88044 07429

33 72439 22965 22452 89352 84598 40162 51112 99370 58994

34 43206 76531 23736 90099 16631 62425 23619 94864 28797
35 19266 29669 79345 1827 15147 85505 58666 84693 65570

36 95222 14122 54382 71115 93771 35510 79567 96455 67252
37 17310 48813 33458 54178 34773 29541 75989 11419 81253
38 72494 45082 88616 80699 59886 36329 69658 71891 03236

39 89818 68866 13858 32642 41924 8469 14327 84551 47068
40 73182 66270 93939 45159 28426 43253 42189 61174 77953

41 41648 15786 24517 80227 79184 72866 96071 36856 92714

42 86633 67816 43550 765 88497 46434 10767 27709 14374
43 60762 91378 18649 96638 85675 33142 79869 18443 24879

44 29283 77878 61353 89214 72140 29236 11476 82552 47777
45 78114 48491 51326 68205 52576 54212 46363 61776 97791
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H.5 Answers

1. 1382 trees/ha with a 95% confidence interval of (1057, 1792).

2. For location III,

H = −(0.5log20.5 + 0.25log20.25 + 0.25log20.25) = 1.5 bits

and (assuming four species were possible) E = 1.5
2.0 = 0.75. For location IV,

H = −(0.75log20.75 + 0.1log20.1 + 0.1log20.1 + 0.05log20.05) = 1.192 bits

and E = 1.192
2.0 = 0.596. Though it has fewer species, location III has a higher diversity and a greater

evenness.

3. (a) For ground feeders: SLASRF = 7, HLASRF = 1.934 bits, ELASRF = 0.748. SHASRF = 7, HHASRF =
2.060 bits, ELASRF = 0.797.

(b) For canopy feeders: SLASRF = 6, HLASRF = 2.106 bits, ELASRF = 0.815. SHASRF = 5,
HHASRF = 1.379 bits, ELASRF = 0.594.

(c) For other feeders: SLASRF = 8, HLASRF = 2.245 bits, ELASRF = 0.746. SHASRF = 8, HHASRF =
2.288 bits, ELASRF = 0.763.

(d) The other feeders in the low altitude subtropical rain forest were most diverse.

4. (a) For Bee 1: H = 2.859 bits. For Bee 2: H = 2.966 bits. For Bee 3: H = 2.601 bits.

(b) For Bee 1: E = 0.715. For Bee 2: E = 0.742. For Bee 3: H = 0.650.

5. (a) For swamps: H = 3.132 bits. For uplands: H = 3.170 bits.

(b) For swamps: E = 0.702. For uplands: E = 0.711.

6. (a) For white-crowned sparrows H = 2.950 bits while for song sparrows H = 2.123 bits.

(b) One should expect the evenness to be lower for song sparrows since the response pattern is so
uneven. For white-crowned sparrows E = 0.797 while for song sparrows E = 0.598. The data
seem to indicate that most (but not all) female white-crowned sparrows can discriminate between
calls of males of their own species and those of a related species.

7. Using (H.1)

N̂ =
CM

R
=

3701(4214)

221
= 70, 570.

Since R
C = 221

3701 = 0.060 < 0.10 and R = 221 > 50, use the normal approximation for the confidence

interval. The confidence limits for R
C are

L1 =
221

3701
− 1.960

√(
221
3701

) (
1− 221

3701

)
3701− 1

= 0.0521

and

L2 =
221

3701
+ 1.960

√(
221
3701

) (
1− 221

3701

)
3701− 1

= 0.0673.

We find that:

the lower 95% confidence limit for N is:
1

0.0673
(4214) = 62, 615

the upper 95% confidence limit for N is:
1

0.0521
(4214) = 80, 883.
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8. (a) Rewriting (H.1)

C =
N̂R

M
=

975, 100(53)

95, 000
= 544.

(b) Since R
C = 53

95,000 < 0.10 and R = 53 > 50, use the normal approximation for the confidence

interval. The confidence limits for R
C are

L1 =
53

544
− 1.960

√(
53
544

) (
1− 53

544

)
544− 1

= 0.0725

and

L2 =
53

544
+ 1.960

√(
53
544

) (
1− 53

544

)
544− 1

= 0.1224.

We find that:

the lower 95% confidence limit for N is:
1

0.1224
(95, 000) = 776, 144

the upper 95% confidence limit for N is:
1

0.0725
(95, 000) = 1, 310, 345.

9. Using Petersen’s original equation (H.1)

N̂ =
CM

R
=

29(27)

9
= 87.

Using Seber’s modified equation (H.2)

N̂ =
(C + 1)(M + 1)

R+ 1
− 1 =

(30)(28)

10
− 1 = 83.

Next
R

C
=

9

29
= 0.31 > 0.10.

Using ν1 = 2(29− 9 + 1) = 42 and ν2 = 2(9) = 18, The lower limit for R
C is

L1 =
9

59 + (29− 9 + 1)F0.025(42,18)
= 0.153.

Using ν′1 = 18 + 2 = 20 and ν′2 = 42− 2 = 40, the upper limit for R
C is

L2 =
(9 + 1)F0.025(20,40)

29− 9 + (10)F0.025(20,40)
= 0.508.

Using the lower and upper confidence limits for R
C in the formula for N̂ , we find that:

the lower 95% confidence limit for N is:
1

0.508
(27) = 53

the upper 95% confidence limit for N is:
1

0.153
(27) = 177.
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10. Using (H.1)

N̂ =
CM

R
=

7600(400)

110
= 27, 636.

Since R
C = 110

7600 = 0.014 < 0.10 and R = 110 > 50, use the normal approximation for the confidence

interval. The confidence limits for R
C are

L1 =
110

7600
− 1.960

√(
110
7600

) (
1− 110

7600

)
7600− 1

= 0.0118

and

L2 =
110

7600
+ 1.960

√(
110
7600

) (
1− 110

7600

)
7600− 1

= 0.0172.

We find that:

the lower 95% confidence limit for N is:
1

0.0172
(400) = 23, 256

the upper 95% confidence limit for N is:
1

0.0118
(400) = 33, 898.

11. Using Petersen’s original equation (H.1)

N̂ =
CM

R
=

366(96)

34
= 1033.

Using Seber’s modified equation (H.2)

N̂ =
(C + 1)(M + 1)

R+ 1
− 1 =

(366)(97)

35
− 1 = 1016.

Since
R

C
=

34

366
< 0.10,

use the normal approximation for the confidence interval. The confidence limits for R
C are

L1 =
34

366
− 1.960

√(
34
366

) (
1− 34

366

)
366− 1

= 0.0631

and

L2 =
34

366
+ 1.960

√(
34
366

) (
1− 34

366

)
366− 1

= 0.1227.

We find that:

the lower 95% confidence limit for N is:
1

0.1227
(96) = 782

the upper 95% confidence limit for N is:
1

0.0631
(96) = 1521.
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Proofs of Selected Results

I.1 The Method of Least Squares for Linear Regression

This section presents another derivation of the least squares linear regression equation which,
unlike the Section A.6 in the text, does not require calculus.

To predict Y for various values of X when the data indicate a straight-line relationship
between the two variables, we need to find a′ and b′ in the standard equation for a straight
line, Y = a′+ b′X, with a′ being the constant equal to the line’s intercept on the Y -axis and b′

being equal to the line’s slope.
Each Y can be expressed as the regression equation value for Xi plus a deviation from that

value, εi:

Yi = a′ + b′
(
Xi −X

)
+ εi.

Letting xi = Xi −X, the ith deviate of X, we can rewrite the last equation as

Yi = a′ + b′xi + εi

or

εi = Yi − a′ − b′xi.

So εi is the difference between the actual and predicted Y values for a particular Xi. The
best-fit equation will minimize the deviations εi’s. More accurately, it will minimize the sum of
the squares of the deviations

n∑
i=1

ε2
i =

n∑
i=1

(
Yi − a′ − b′xi

)2
= SSError(a

′, b′).

Notice that the sum of squares depends on the choice of a′ and b′. We want to find values for
the intercept a and slope b that minimize this number. In other words, for any choice of a′ and
b′, we should have

SSError(a
′, b′) ≥ SSError(a, b).

First we will determine a. Since SSError(a, b) is minimal, if we choose any a′, then

SSError(a
′, b) ≥ SSError(a, b).

This is equivalent to
n∑
i=1

(
Yi − a′ − bxi

)2 ≥ n∑
i=1

(Yi − a− bxi)2

or
n∑
i=1

[(
Yi − a′ − bxi

)2 − (Yi − a− bxi)2
]
≥ 0. (I.1)
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Now let ε denote the error in the choice of a′, that is, ε = a′− a or, equivalently, a′ = a+ ε.
Then (I.1) can be written as

n∑
i=1

[
(Yi − (a+ ε)− bxi)2 − (Yi − a− bxi)2

]
≥ 0. (I.2)

Each summand in (I.2) can be simplified as follows:

(Yi − a− ε− bxi)2 − (Yi − a− bxi)2 = [(Yi − a− bxi)− ε]2 − (Yi − a− bxi)2

= −2(Yi − a− bxi)ε+ ε2.

Consequently, (I.2) can be written as

n∑
i=1

[
−2(Yi − a− bxi)ε+ ε2

]
≥ 0

or, equivalently,

nε2 −

(
2

n∑
i=1

(Yi − a− bxi)

)
ε ≥ 0. (I.3)

Now (I.3) is true for all choices of ε. But as a function of ε, the left-hand side of (I.3) is a
quadratic. Since the coefficient of ε2 is n which is greater than 0, the graph of the quadratic is
a concave up parabola. If

∑
(Yi − a− bxi) 6= 0, then this quadratic, which can be factored as

ε

[
nε−

(
2

n∑
i=1

(Yi − a− bxi)

)]
,

has two distinct roots. For any value of ε between the roots, the graph of the parabola lies below
the horizontal axis, that is,

nε2 −

(
2

n∑
i=1

(Yi − a− bxi)

)
ε < 0.

But this contradicts (I.3). So it must be the case that

n∑
i=1

(Yi − a− bxi) = 0 (I.4)

and then (I.3) simplifies to nε2 ≥ 0. (Of course, this quadratic has a single root at ε = 0 and
is never negative, which checks.) Equation (I.4) can be written more simply as

na+

(
n∑
i=1

xi

)
β =

n∑
i=1

Yi

Since the sum of the deviates is always 0 (see Fact 4), we obtain

na =
n∑
i=1

Yi.



88 APPENDIX I: Proofs of Selected Results

or

a =
1

n

n∑
i=1

Yi = Y . (I.5)

We determine b in a similar fashion. Since SSError(a, b) is minimal, if we choose any b′, then

SSError(a, b
′) ≥ SSError(a, b).

This is equivalent to
n∑
i=1

(
Yi − a− b′xi

)2 ≥ n∑
i=1

(Yi − a− bxi)2 .

or
n∑
i=1

[(
Yi − a− b′xi

)2 − (Yi − a− bxi)2
]
≥ 0. (I.6)

Now choose δ so that b′ = b+ δ. Then (I.6) becomes

n∑
i=1

[
(Yi − a− bxi − δxi)2 − (Yi − a− bxi)2

]
≥ 0. (I.7)

Simplify each summand in (I.7):

(Yi − a− bxi − δxi)2 − (Yi − a− bxi)2 = [(Yi − a− bxi)− δxi]2 − (Yi − a− bxi)2

= −2(Yi − a− bxi)δxi + δ2x2
i .

Consequently, (I.7) can be written as

n∑
i=1

[
−2(Yi − a− bxi)δxi + δ2x2

i

]
≥ 0

or, equivalently, (
n∑
i=1

x2
i

)
δ2 −

(
2

n∑
i=1

(Yi − a− bxi)xi

)
δ ≥ 0. (I.8)

Now repeat the argument we made earlier for ε. As a function of δ, the graph of the left-hand
side of (I.8) is a concave up parabola. If

∑
(Yi − a − bxi)xi 6= 0, then this parabola has two

distinct roots. For any value of δ between the roots, the parabola lies below the horizontal axis
so (

n∑
i=1

x2
i

)
δ2 −

(
2

n∑
i=1

(Yi − a− bxi)xi

)
δ < 0.

But this contradicts (I.8). So it must be the case that

n∑
i=1

(Yi − a− bxi)xi = 0

or (
n∑
i=1

x2
i

)
b+

(
n∑
i=1

xi

)
a =

n∑
i=1

Yixi.
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Again
∑
xi = 0, so we obtain

b =

∑n
i=1 Yixi∑n
i=1 x

2
i

=

∑n
i=1 Yi(Xi −X)∑n
i=1(Xi −X)2

. (I.9)

Use (A.4) to simplify the numerator for b in the last expression in (I.9).

n∑
i=1

Yi
(
Xi −X

)
=

n∑
i=1

XiYi −X
n∑
i=1

Yi =

n∑
i=1

XiYi −
(
∑n

i=1Xi)(
∑n

i=1 Yi)

n
.

We can now rewrite (I.9) using the expression above as the numerator and the sum of squares
formula (A.7) as the denominator to obtain the expression for the slope,

b =

∑n
i=1XiYi −

(
∑n
i=1Xi)(

∑n
i=1 Yi)

n∑n
i=1X

2
i −

(
∑n
i=1Xi)

2

n

. (I.10)

Using (I.5) for the intercept and the expression for b in (I.10) for the slope makes

Y = Y + b
(
X −X

)
the best-fitting straight line according to the least squares criterion.
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J.1 Table of Critical Values for the Wilcoxon Rank-Sum Test

The tables on the following pages provide critical values for the Wilcoxon rank-sum test for
independent samples with sizes from 3 to 25. Column m is the sample size for the smaller
sample and column n is the sample size for the larger sample. If the sample sizes are equal,
either sample can be designated m. For each pair of sample sizes (m,n) there are two sets of
critical values, one set for one-tail α = 0.025 and two-tail α = 0.05 and a second set for one-tail
α = 0.05 and two-tail α = 0.10. Suppose for a two-tailed test at α = 0.05 we have m = 8 and
n = 9. In the appropriate row and column we find the following numbers 51 93 16 0.0232. The
51 and 93 are the lower and upper critical values for WX , the statistic testing H0: MX = MY .
If WX ≤ 51 or WX ≥ 93, H0 would be rejected. The value 0.0232 is the exact P value for the
critical values of 51 or 93. The 16 under the column heading d is called the depth. Basically
d is the depth one must go into the rank-orederd elementary estimates from each end to find
the confidence limit values. In this case, the 16th smallest elementary estimate and the 16th
largest elementary estimate are the 95% confidence interval limits for Mx −My.
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1-tail α = 0.025 α = 0.05 1-tail α = 0.025 α = 0.05
2-tail α = 0.05 α = 0.10 2-tail α = 0.05 α = 0.10

m n W d P W d P m n W d P W d P

3 3 6 15 1 .0500 5 10 23 57 9 .0200 26 54 12 .0496

3 4 6 18 1 .0286 5 11 24 61 10 .0190 27 58 13 .0449

3 5 6 21 1 .0179 7 20 2 .0357 5 12 26 64 12 .0242 28 62 14 .0409
3 6 7 23 2 .0238 8 22 3 .0476 5 13 27 68 13 .0230 30 65 16 .0473

3 7 7 26 2 .0167 8 25 3 .0333 5 14 28 72 14 .0218 31 69 17 .0435

3 8 8 28 3 .0242 9 27 4 .0424 5 15 29 76 15 .0209 33 72 19 .0491
3 9 8 31 3 .0182 10 29 5 .0500 5 16 30 80 16 .0201 34 76 20 .0455

3 10 9 33 4 .0245 10 32 5 .0385 5 17 32 83 18 .0238 35 80 21 .0425
3 11 9 36 4 .0192 11 34 6 .0440 5 18 33 87 19 .0229 37 83 23 .0472

3 12 10 38 5 .0242 11 37 6 .0352 5 19 34 91 20 .0220 38 87 24 .0442

3 13 10 41 5 .0196 12 39 7 .0411 5 20 35 95 21 .0212 40 90 26 .0485
3 14 11 43 6 .0235 13 41 8 .0456 5 21 37 98 23 .0243 41 94 27 .0457

3 15 11 46 6 .0196 13 44 8 .0380 5 22 38 102 24 .0234 43 97 29 .0496

3 16 12 48 7 .0237 14 46 9 .0423 5 23 39 106 25 .0226 44 101 30 .0469
3 17 12 51 7 .0202 15 48 10 .0465 5 24 40 110 26 .0219 45 105 31 .0445

3 18 13 53 8 .0233 15 51 10 .0398 5 25 42 113 28 .0246 47 108 33 .0480

3 19 13 56 8 .0201 16 53 11 .0435 6 6 26 52 6 .0206 28 50 8 .0465
3 20 14 58 9 .0232 17 55 12 .0469 6 7 27 57 7 .0175 29 55 9 .0367

3 21 14 61 9 .0203 17 58 12 .0410 6 8 29 61 9 .0213 31 59 11 .0406

3 22 15 63 10 .0230 18 60 13 .0443 6 9 31 65 11 .0248 33 63 13 .0440

3 23 15 66 10 .0204 19 62 14 .0473 6 10 32 70 12 .0210 35 67 15 .0467

3 24 16 68 11 .0229 19 65 14 .0421 6 11 34 74 14 .0238 37 71 17 .0491

3 25 16 71 11 .0205 20 67 15 .0449 6 12 35 79 15 .0207 38 76 18 .0415
4 4 10 26 1 .0143 11 25 2 .0286 6 13 37 83 17 .0231 40 80 20 .0437

4 5 11 29 2 .0159 12 28 3 .0317 6 14 38 88 18 .0204 42 84 22 .0457

4 6 12 32 3 .0190 13 31 4 .0333 6 15 40 92 20 .0224 44 88 24 .0474

4 7 13 35 4 .0212 14 34 5 .0364 6 16 42 96 22 .0244 46 92 26 .0490

4 8 14 38 5 .0242 15 37 6 .0364 6 17 43 101 23 .0219 47 97 27 .0433
4 9 14 42 5 .0168 16 40 7 .0378 6 18 45 105 25 .0236 49 101 29 .0448

4 10 15 45 6 .0180 17 43 8 .0380 6 19 46 110 26 .0214 51 105 31 .0462

4 11 16 48 7 .0198 18 46 9 .0388 6 20 48 114 28 .0229 53 109 33 .0475
4 12 17 51 8 .0209 19 49 10 .0390 6 21 50 118 30 .0244 55 113 35 .0487

4 13 18 54 9 .0223 20 52 11 .0395 6 22 51 123 31 .0224 57 117 37 .0498

4 14 19 57 10 .0232 21 55 12 .0395 6 23 53 127 33 .0237 58 122 38 .0452
4 15 20 60 11 .0243 22 58 13 .0400 6 24 54 132 34 .0219 60 126 40 .0463

4 16 21 63 12 .0250 24 60 15 .0497 6 25 56 136 36 .0231 62 130 42 .0473

4 17 21 67 12 .0202 25 63 16 .0493 7 7 36 69 9 .0189 39 66 12 .0487
4 18 22 70 13 .0212 26 66 17 .0491 7 8 38 74 11 .0200 41 71 14 .0469

4 19 23 73 14 .0219 27 69 18 .0487 7 9 40 79 13 .0209 43 76 16 .0454
4 20 24 76 15 .0227 28 72 19 .0485 7 10 42 84 15 .0215 45 81 18 .0439

4 21 25 79 16 .0233 29 75 20 .0481 7 11 44 89 17 .0221 47 86 20 .0427

4 22 26 82 17 .0240 30 78 21 .0480 7 12 46 94 19 .0225 49 91 22 .0416
4 23 27 85 18 .0246 31 81 22 .0477 7 13 48 99 21 .0228 52 95 25 .0484

4 24 27 89 18 .0211 32 84 23 .0475 7 14 50 104 23 .0230 54 100 27 .0469

4 25 28 92 19 .0217 33 87 24 .0473 7 15 52 109 25 .0233 56 105 29 .0455

5 5 17 38 3 .0159 19 36 5 .0476 7 16 54 114 27 .0234 58 110 31 .0443
5 6 18 42 4 .0152 20 40 6 .0411 7 17 56 119 29 .0236 61 114 34 .0497

5 7 20 45 6 .0240 21 44 7 .0366 7 18 58 124 31 .0237 63 119 36 .0484
5 8 21 49 7 .0225 23 47 9 .0466 7 19 60 129 33 .0238 65 124 38 .0471

5 9 22 53 8 .0210 24 51 10 .0415 7 20 62 134 35 .0239 67 129 40 .0460
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1-tail α = 0.025 α = 0.05 1-tail α = 0.025 α = 0.05
2-tail α = 0.05 α = 0.10 2-tail α = 0.05 α = 0.10

m n W d P W d P m n W d P W d P

7 21 64 139 37 .0240 69 134 42 .0449 10 20 110 200 56 .0245 117 193 62 .0498

7 22 66 144 39 .0240 72 138 45 .0492 10 21 113 207 59 .0241 120 200 65 .0478

7 23 68 149 41 .0241 74 143 47 .0481 10 22 116 214 62 .0237 123 207 68 .0459
7 24 70 154 43 .0241 76 148 49 .0470 10 23 119 221 65 .0233 127 213 72 .0482

7 25 72 159 45 .0242 78 153 51 .0461 10 24 122 228 68 .0230 130 220 75 .0465

8 8 49 87 14 .0249 51 85 16 .0415 10 25 126 234 72 .0248 134 226 79 .0486
8 9 51 93 16 .0232 54 90 19 .0464 11 11 96 157 31 .0237 100 153 34 .0440

8 10 53 99 18 .0217 56 96 21 .0416 11 12 99 165 34 .0219 104 160 38 .0454
8 11 55 105 20 .0204 59 101 24 .0454 11 13 103 172 38 .0237 108 167 42 .0467

8 12 58 110 23 .0237 62 106 27 .0489 11 14 106 180 41 .0221 112 174 46 .0477

8 13 60 116 25 .0223 64 112 29 .0445 11 15 110 187 45 .0236 116 181 50 .0486
8 14 62 122 27 .0211 67 117 32 .0475 11 16 113 195 48 .0221 120 188 54 .0494

8 15 65 127 30 .0237 69 123 34 .0437 11 17 117 202 52 .0235 123 196 57 .0453

8 16 67 133 32 .0224 72 128 37 .0463 11 18 121 209 56 .0247 127 203 61 .0461
8 17 70 138 35 .0247 75 133 40 .0487 11 19 124 217 59 .0233 131 210 65 .0468

8 18 72 144 37 .0235 77 139 42 .0452 11 20 128 224 63 .0244 135 217 69 .0474

8 19 74 150 39 .0224 80 144 45 .0475 11 21 131 232 66 .0230 139 224 73 .0480
8 20 77 155 42 .0244 83 149 48 .0495 11 22 135 239 70 .0240 143 231 77 .0486

8 21 79 161 44 .0233 85 155 50 .0464 11 23 139 246 74 .0250 147 238 81 .0490

8 22 81 167 46 .0223 88 160 53 .0483 11 24 142 254 77 .0237 151 245 85 .0495

8 23 84 172 49 .0240 90 166 55 .0454 11 25 146 261 81 .0246 155 252 89 .0499

8 24 86 178 51 .0231 93 171 58 .0472 12 12 115 185 38 .0225 120 180 42 .0444

8 25 89 183 54 .0247 96 176 61 .0488 12 13 119 193 42 .0229 125 187 47 .0488
9 9 62 109 18 .0200 66 105 22 .0470 12 14 123 201 46 .0232 129 195 51 .0475

9 10 65 115 21 .0217 69 111 25 .0474 12 15 127 209 50 .0234 133 203 55 .0463

9 11 68 121 24 .0232 72 117 28 .0476 12 16 131 217 54 .0236 138 210 60 .0500

9 12 71 127 27 .0245 75 123 31 .0477 12 17 135 225 58 .0238 142 218 64 .0486

9 13 73 134 29 .0217 78 129 34 .0478 12 18 139 233 62 .0239 146 226 68 .0474
9 14 76 140 32 .0228 81 135 37 .0478 12 19 143 241 66 .0240 150 234 72 .0463

9 15 79 146 35 .0238 84 141 40 .0478 12 20 147 249 70 .0241 155 241 77 .0493

9 16 82 152 38 .0247 87 147 43 .0477 12 21 151 257 74 .0242 159 249 81 .0481
9 17 84 159 40 .0223 90 153 46 .0476 12 22 155 265 78 .0242 163 257 85 .0471

9 18 87 165 43 .0231 93 159 49 .0475 12 23 159 273 82 .0243 168 264 90 .0496

9 19 90 171 46 .0239 96 165 52 .0474 12 24 163 281 86 .0243 172 272 94 .0486
9 20 93 177 49 .0245 99 171 55 .0473 12 25 167 289 90 .0243 176 280 98 .0475

9 21 95 184 51 .0225 102 177 58 .0472 13 13 136 215 46 .0221 142 209 51 .0454

9 22 98 190 54 .0231 105 183 61 .0471 13 14 141 223 51 .0241 147 217 56 .0472
9 23 101 196 57 .0237 108 189 64 .0470 13 15 145 232 55 .0232 152 225 61 .0489

9 24 104 202 60 .0243 111 195 67 .0469 13 16 150 240 60 .0250 156 234 65 .0458
9 25 107 208 63 .0249 114 201 70 .0468 13 17 154 249 64 .0240 161 242 70 .0472

10 10 78 132 24 .0216 82 128 28 .0446 13 18 158 258 68 .0232 166 250 75 .0485

10 11 81 139 27 .0215 86 134 32 .0493 13 19 163 266 73 .0247 171 258 80 .0497
10 12 84 146 30 .0213 89 141 35 .0465 13 20 167 275 77 .0238 175 267 84 .0470

10 13 88 152 34 .0247 92 148 38 .0441 13 21 171 284 81 .0231 180 275 89 .0481

10 14 91 159 37 .0242 96 154 42 .0478 13 22 176 292 86 .0243 185 283 94 .0491

10 15 94 166 40 .0238 99 161 45 .0455 13 23 180 301 90 .0236 189 292 98 .0467
10 16 97 173 43 .0234 103 167 49 .0487 13 24 185 309 95 .0247 194 300 103 .0476

10 17 100 180 46 .0230 106 174 52 .0465 13 25 189 318 99 .0240 199 308 108 .0485
10 18 103 187 49 .0226 110 180 56 .0493 14 14 160 246 56 .0249 166 240 61 .0469

10 19 107 193 53 .0250 113 187 59 .0472 14 15 164 256 60 .0229 171 249 66 .0466
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1-tail α = 0.025 α = 0.05 1-tail α = 0.025 α = 0.05
2-tail α = 0.05 α = 0.10 2-tail α = 0.05 α = 0.10

m n W d P W d P m n W d P W d P

14 16 169 265 65 .0236 176 258 72 .0463 17 24 282 432 130 .0239 294 420 141 .0492

14 17 174 274 70 .0242 182 266 78 .0500 17 25 288 443 136 .0238 300 431 147 .0480

14 18 179 283 75 .0247 187 275 83 .0495 18 18 270 396 100 .0235 280 386 109 .0485
14 19 183 293 79 .0230 192 284 88 .0489 18 19 277 407 107 .0246 287 397 116 .0490

14 20 188 302 84 .0235 197 293 93 .0484 18 20 283 419 113 .0238 294 408 123 .0495

14 21 193 311 89 .0239 202 302 98 .0480 18 21 290 430 120 .0247 301 419 130 .0499
14 22 198 320 94 .0243 207 311 103 .0475 18 22 296 442 126 .0240 307 431 136 .0474

14 23 203 329 99 .0247 212 320 108 .0471 18 23 303 453 133 .0248 314 442 143 .0478
14 24 207 339 103 .0233 218 328 114 .0498 18 24 309 465 139 .0240 321 453 150 .0481

14 25 212 348 108 .0236 223 337 119 .0492 18 25 316 476 146 .0248 328 464 157 .0484

15 15 184 281 65 .0227 192 273 73 .0488 19 19 303 438 114 .0248 313 428 123 .0482
15 16 190 290 71 .0247 197 283 78 .0466 19 20 309 451 120 .0234 320 440 130 .0474

15 17 195 300 76 .0243 203 292 84 .0485 19 21 316 463 127 .0236 328 451 138 .0494

15 18 200 310 81 .0239 208 302 89 .0465 19 22 323 475 134 .0238 335 463 145 .0486
15 19 205 320 86 .0235 214 311 95 .0482 19 23 330 487 141 .0240 342 475 152 .0478

15 20 210 330 91 .0232 220 320 101 .0497 19 24 337 499 148 .0241 350 486 160 .0496

15 21 216 339 97 .0247 225 330 106 .0478 19 25 344 511 155 .0243 357 498 167 .0488
15 22 221 349 102 .0243 231 339 112 .0492 20 20 337 483 128 .0245 348 472 138 .0482

15 23 226 359 107 .0239 236 349 117 .0474 20 21 344 496 135 .0241 356 484 146 .0490

15 24 231 369 112 .0235 242 358 123 .0486 20 22 351 509 142 .0236 364 496 154 .0497

15 25 237 378 118 .0248 248 367 129 .0499 20 23 359 521 150 .0246 371 509 161 .0478

16 16 211 317 76 .0234 219 309 84 .0469 20 24 366 534 157 .0242 379 521 169 .0484

16 17 217 327 82 .0243 225 319 90 .0471 20 25 373 547 164 .0237 387 533 177 .0490
16 18 222 338 87 .0231 231 329 96 .0473 21 21 373 530 143 .0245 385 518 154 .0486

16 19 228 348 93 .0239 237 339 102 .0474 21 22 381 543 151 .0249 393 531 162 .0482

16 20 234 358 99 .0247 243 349 108 .0475 21 23 388 557 158 .0238 401 544 170 .0478

16 21 239 369 104 .0235 249 359 114 .0475 21 24 396 570 166 .0242 410 556 179 .0497

16 22 245 379 110 .0242 255 369 120 .0476 21 25 404 583 174 .0245 418 569 187 .0492
16 23 251 389 116 .0248 261 379 126 .0476 22 22 411 579 159 .0247 424 566 171 .0491

16 24 256 400 121 .0238 267 389 132 .0476 22 23 419 593 167 .0244 432 580 179 .0477

16 25 262 410 127 .0243 273 399 138 .0476 22 24 427 607 175 .0242 441 593 188 .0486
17 17 240 355 88 .0243 249 346 97 .0493 22 25 435 621 183 .0240 450 606 197 .0494

17 18 246 366 94 .0243 255 357 103 .0479 23 23 451 630 176 .0249 465 616 189 .0499

17 19 252 377 100 .0243 262 367 110 .0499 23 24 459 645 184 .0242 474 630 198 .0497
17 20 258 388 106 .0242 268 378 116 .0485 23 25 468 659 193 .0246 483 644 207 .0495

17 21 264 399 112 .0242 274 389 122 .0473 24 24 492 684 193 .0241 507 669 207 .0486

17 22 270 410 118 .0241 281 399 129 .0490 24 25 501 699 202 .0241 517 683 217 .0496
17 23 276 421 124 .0240 287 410 135 .0477 25 25 536 739 212 .0247 552 723 227 .0497
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J.2 Cumulative Standard Normal Distribution

Table C.3 is a tabulation of the cumulative standard normal distribution (Z) for values from −3.99 to
3.99. This table can be used to calculate probabilities for various CDFs of normal distributions that have
been standardized by the X−µ

σ transformation. While normal distributions can have various values for
the mean and standard deviation, the Z transformation has a mean of µ = 0 and a standard deviation
of σ = 1. To use this table, transform the normal variate X to a Z value. For example, suppose X is
distributed as normal with µ = 100 and σ = 6, then

P (X ≤ 93) = P

(
Z =

93− 100

6

)
= P (Z ≤ −1.17).

Next find the value at the intersection of the “−1.1” row and the “0.07” column, 0.1210. This value
is the probability of X less than or equal to 93 in the original distribution. For more examples, see
Chapter 3.
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F (z) = P (Z ≤ z) =

∫ z

−∞

1√
2π
ex

2/2 dx

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

−3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

−3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003

−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005

−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

−2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

−1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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J.3 Student’s t Distribution

Unlike Table C.3 that collapsed all normal distributions into a single standard normal distribution,

Table C.4 represents a summary of partial CDFs for a number of t distributions. Each row of this table

summarizes a different t distribution as indicated by its degrees of freedom (n − 1). The body of the

table presents t0 values that represent cutoff points for various probabilities ranging from 0.10 to 0.0025

for one tail and 0.20 to 0.005 for two tails and that are tabulated as various columns. For example, if

n = 20, then df = 19 and for P (−t0 ≤ t ≤ t0) = 0.95, the table value t0 would be 2.093. This value

is found as the intersection of the row labeled “19” and the column headed “0.05” (2-tail). This means

that −2.093 and 2.093 cut off 0.025 in each tail of the distribution. For P (t ≤ t0) = 0.10, the table

value t0 would be −1.328. Left tail values are negative. For P (t ≥ t0) = 0.10, the table value t0 would

be +1.328. For P (t ≤ t0) = 0.90, the table value t0 would again be +1.328. For more examples see

Chapters 4 and 6. Notice that the limit of the t distribution family (where df = ∞) is the standard

normal distribution (Z). The values in the last row of Table C.4 can also be found using Table C.3.
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.......

...

1-tail 0.10 0.05 0.025 0.0125 0.01 0.0083 0.00625 0.005 0.00416 0.0025 1-tail

2-tail 0.20 0.10 0.050 0.0250 0.02 0.0166 0.01250 0.010 0.00833 0.0050 2-tail

df: 1 3.078 6.314 12.706 25.452 31.821 38.188 50.923 63.657 76.390 127.3 df: 1
2 1.886 2.920 4.303 6.205 6.965 7.649 8.860 9.925 10.886 14.09 2

3 1.638 2.353 3.182 4.177 4.541 4.857 5.392 5.841 6.232 7.453 3

4 1.533 2.132 2.776 3.495 3.747 3.961 4.315 4.604 4.851 5.598 4
5 1.476 2.015 2.571 3.163 3.365 3.534 3.810 4.032 4.219 4.773 5

6 1.440 1.943 2.447 2.969 3.143 3.287 3.521 3.707 3.863 4.317 6

7 1.415 1.895 2.365 2.841 2.998 3.128 3.335 3.499 3.636 4.029 7

8 1.397 1.860 2.306 2.752 2.896 3.016 3.206 3.355 3.479 3.833 8

9 1.383 1.833 2.262 2.685 2.821 2.933 3.111 3.250 3.364 3.690 9
10 1.372 1.812 2.228 2.634 2.764 2.870 3.038 3.169 3.277 3.581 10

11 1.363 1.796 2.201 2.593 2.718 2.820 2.981 3.106 3.208 3.497 11

12 1.356 1.782 2.179 2.560 2.681 2.779 2.934 3.055 3.153 3.428 12
13 1.350 1.771 2.160 2.533 2.650 2.746 2.896 3.012 3.107 3.372 13

14 1.345 1.761 2.145 2.510 2.624 2.718 2.864 2.977 3.069 3.326 14

15 1.341 1.753 2.131 2.490 2.602 2.694 2.837 2.947 3.036 3.286 15

16 1.337 1.746 2.120 2.473 2.583 2.673 2.813 2.921 3.008 3.252 16

17 1.333 1.740 2.110 2.458 2.567 2.655 2.793 2.898 2.984 3.222 17

18 1.330 1.734 2.101 2.445 2.552 2.639 2.775 2.878 2.963 3.197 18
19 1.328 1.729 2.093 2.433 2.539 2.625 2.759 2.861 2.944 3.174 19
20 1.325 1.725 2.086 2.423 2.528 2.613 2.744 2.845 2.927 3.153 20

21 1.323 1.721 2.080 2.414 2.518 2.601 2.732 2.831 2.912 3.135 21
22 1.321 1.717 2.074 2.405 2.508 2.591 2.720 2.819 2.899 3.119 22
23 1.319 1.714 2.069 2.398 2.500 2.582 2.710 2.807 2.886 3.104 23
24 1.318 1.711 2.064 2.391 2.492 2.574 2.700 2.797 2.875 3.091 24

25 1.316 1.708 2.060 2.385 2.485 2.566 2.692 2.787 2.865 3.078 25
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1-tail 0.10 0.05 0.025 0.0125 0.01 0.0083 0.00625 0.005 0.00416 0.0025 1-tail
2-tail 0.20 0.10 0.050 0.0250 0.02 0.0166 0.01250 0.010 0.00833 0.0050 2-tail

df: 26 1.315 1.706 2.056 2.379 2.479 2.559 2.684 2.779 2.856 3.067 df: 26
27 1.314 1.703 2.052 2.373 2.473 2.552 2.676 2.771 2.847 3.057 27

28 1.313 1.701 2.048 2.368 2.467 2.546 2.669 2.763 2.839 3.047 28

29 1.311 1.699 2.045 2.364 2.462 2.541 2.663 2.756 2.832 3.038 29
30 1.310 1.697 2.042 2.360 2.457 2.536 2.657 2.750 2.825 3.030 30

31 1.309 1.696 2.040 2.356 2.453 2.531 2.652 2.744 2.818 3.022 31

32 1.309 1.694 2.037 2.352 2.449 2.526 2.647 2.738 2.812 3.015 32
33 1.308 1.692 2.035 2.348 2.445 2.522 2.642 2.733 2.807 3.008 33

34 1.307 1.691 2.032 2.345 2.441 2.518 2.638 2.728 2.802 3.002 34

35 1.306 1.690 2.030 2.342 2.438 2.515 2.633 2.724 2.797 2.996 35

36 1.306 1.688 2.028 2.339 2.434 2.511 2.629 2.719 2.792 2.990 36

37 1.305 1.687 2.026 2.336 2.431 2.508 2.626 2.715 2.788 2.985 37

38 1.304 1.686 2.024 2.334 2.429 2.505 2.622 2.712 2.783 2.980 38
39 1.304 1.685 2.023 2.331 2.426 2.502 2.619 2.708 2.780 2.976 39

40 1.303 1.684 2.021 2.329 2.423 2.499 2.616 2.704 2.776 2.971 40

41 1.303 1.683 2.020 2.327 2.421 2.496 2.613 2.701 2.772 2.967 41

42 1.302 1.682 2.018 2.325 2.418 2.494 2.610 2.698 2.769 2.963 42

43 1.302 1.681 2.017 2.323 2.416 2.491 2.607 2.695 2.766 2.959 43
44 1.301 1.680 2.015 2.321 2.414 2.489 2.605 2.692 2.763 2.956 44

45 1.301 1.679 2.014 2.319 2.412 2.487 2.602 2.690 2.760 2.952 45

46 1.300 1.679 2.013 2.317 2.410 2.485 2.600 2.687 2.757 2.949 46
47 1.300 1.678 2.012 2.315 2.408 2.483 2.597 2.685 2.755 2.946 47

48 1.299 1.677 2.011 2.314 2.407 2.481 2.595 2.682 2.752 2.943 48

49 1.299 1.677 2.010 2.312 2.405 2.479 2.593 2.680 2.750 2.940 49
50 1.299 1.676 2.009 2.311 2.403 2.477 2.591 2.678 2.747 2.937 50

51 1.298 1.675 2.008 2.310 2.402 2.476 2.589 2.676 2.745 2.934 51

52 1.298 1.675 2.007 2.308 2.400 2.474 2.588 2.674 2.743 2.932 52
53 1.298 1.674 2.006 2.307 2.399 2.472 2.586 2.672 2.741 2.929 53

54 1.297 1.674 2.005 2.306 2.397 2.471 2.584 2.670 2.739 2.927 54

55 1.297 1.673 2.004 2.304 2.396 2.469 2.583 2.668 2.737 2.925 55

56 1.297 1.673 2.003 2.303 2.395 2.468 2.581 2.667 2.735 2.923 56

57 1.297 1.672 2.002 2.302 2.394 2.467 2.579 2.665 2.733 2.920 57
58 1.296 1.672 2.002 2.301 2.392 2.465 2.578 2.663 2.732 2.918 58

59 1.296 1.671 2.001 2.300 2.391 2.464 2.577 2.662 2.730 2.916 59

60 1.296 1.671 2.000 2.299 2.390 2.463 2.575 2.660 2.729 2.915 60

61 1.296 1.670 2.000 2.298 2.389 2.462 2.574 2.659 2.727 2.913 61
62 1.295 1.670 1.999 2.297 2.388 2.461 2.573 2.657 2.726 2.911 62

63 1.295 1.669 1.998 2.296 2.387 2.460 2.571 2.656 2.724 2.909 63
64 1.295 1.669 1.998 2.295 2.386 2.459 2.570 2.655 2.723 2.908 64

65 1.295 1.669 1.997 2.295 2.385 2.458 2.569 2.654 2.721 2.906 65

66 1.295 1.668 1.997 2.294 2.384 2.457 2.568 2.652 2.720 2.904 66
67 1.294 1.668 1.996 2.293 2.383 2.456 2.567 2.651 2.719 2.903 67

68 1.294 1.668 1.995 2.292 2.382 2.455 2.566 2.650 2.718 2.902 68
69 1.294 1.667 1.995 2.291 2.382 2.454 2.565 2.649 2.716 2.900 69
70 1.294 1.667 1.994 2.291 2.381 2.453 2.564 2.648 2.715 2.899 70

71 1.294 1.667 1.994 2.290 2.380 2.452 2.563 2.647 2.714 2.897 71

72 1.293 1.666 1.993 2.289 2.379 2.451 2.562 2.646 2.713 2.896 72

73 1.293 1.666 1.993 2.289 2.379 2.450 2.561 2.645 2.712 2.895 73

74 1.293 1.666 1.993 2.288 2.378 2.450 2.560 2.644 2.711 2.894 74
75 1.293 1.665 1.992 2.287 2.377 2.449 2.559 2.643 2.710 2.892 75
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1-tail 0.10 0.05 0.025 0.0125 0.01 0.0083 0.00625 0.005 0.00416 0.0025 1-tail
2-tail 0.20 0.10 0.050 0.0250 0.02 0.0166 0.01250 0.010 0.00833 0.0050 2-tail

df: 76 1.293 1.665 1.992 2.287 2.376 2.448 2.559 2.642 2.709 2.891 df: 76
77 1.293 1.665 1.991 2.286 2.376 2.447 2.558 2.641 2.708 2.890 77

78 1.292 1.665 1.991 2.285 2.375 2.447 2.557 2.640 2.707 2.889 78

79 1.292 1.664 1.990 2.285 2.374 2.446 2.556 2.640 2.706 2.888 79
80 1.292 1.664 1.990 2.284 2.374 2.445 2.555 2.639 2.705 2.887 80

81 1.292 1.664 1.990 2.284 2.373 2.445 2.555 2.638 2.705 2.886 81

82 1.292 1.664 1.989 2.283 2.373 2.444 2.554 2.637 2.704 2.885 82
83 1.292 1.663 1.989 2.283 2.372 2.443 2.553 2.636 2.703 2.884 83

84 1.292 1.663 1.989 2.282 2.372 2.443 2.553 2.636 2.702 2.883 84

85 1.292 1.663 1.988 2.282 2.371 2.442 2.552 2.635 2.701 2.882 85

86 1.291 1.663 1.988 2.281 2.370 2.442 2.551 2.634 2.701 2.881 86

87 1.291 1.663 1.988 2.281 2.370 2.441 2.551 2.634 2.700 2.880 87

88 1.291 1.662 1.987 2.280 2.369 2.441 2.550 2.633 2.699 2.880 88
89 1.291 1.662 1.987 2.280 2.369 2.440 2.549 2.632 2.699 2.879 89

90 1.291 1.662 1.987 2.280 2.368 2.440 2.549 2.632 2.698 2.878 90

91 1.291 1.662 1.986 2.279 2.368 2.439 2.548 2.631 2.697 2.877 91

92 1.291 1.662 1.986 2.279 2.368 2.439 2.548 2.630 2.697 2.876 92

93 1.291 1.661 1.986 2.278 2.367 2.438 2.547 2.630 2.696 2.876 93
94 1.291 1.661 1.986 2.278 2.367 2.438 2.547 2.629 2.695 2.875 94

95 1.291 1.661 1.985 2.277 2.366 2.437 2.546 2.629 2.695 2.874 95

96 1.290 1.661 1.985 2.277 2.366 2.437 2.546 2.628 2.694 2.873 96
97 1.290 1.661 1.985 2.277 2.365 2.436 2.545 2.627 2.693 2.873 97

98 1.290 1.661 1.984 2.276 2.365 2.436 2.545 2.627 2.693 2.872 98

99 1.290 1.660 1.984 2.276 2.365 2.435 2.544 2.626 2.692 2.871 99
100 1.290 1.660 1.984 2.276 2.364 2.435 2.544 2.626 2.692 2.871 100

110 1.289 1.659 1.982 2.272 2.361 2.431 2.539 2.621 2.687 2.865 110

120 1.289 1.658 1.980 2.270 2.358 2.428 2.536 2.617 2.683 2.860 120
130 1.288 1.657 1.978 2.268 2.355 2.425 2.533 2.614 2.679 2.856 130

140 1.288 1.656 1.977 2.266 2.353 2.423 2.530 2.611 2.676 2.852 140

150 1.287 1.655 1.976 2.264 2.351 2.421 2.528 2.609 2.674 2.849 150

160 1.287 1.654 1.975 2.263 2.350 2.419 2.526 2.607 2.671 2.847 160

170 1.287 1.654 1.974 2.261 2.348 2.418 2.525 2.605 2.669 2.844 170
180 1.286 1.653 1.973 2.260 2.347 2.417 2.523 2.603 2.668 2.842 180

190 1.286 1.653 1.973 2.259 2.346 2.415 2.522 2.602 2.666 2.840 190

200 1.286 1.653 1.972 2.258 2.345 2.414 2.520 2.601 2.665 2.838 200

250 1.285 1.651 1.969 2.255 2.341 2.410 2.516 2.596 2.659 2.832 250
300 1.284 1.650 1.968 2.253 2.339 2.407 2.513 2.592 2.656 2.828 300

350 1.284 1.649 1.967 2.251 2.337 2.406 2.511 2.590 2.653 2.825 350
400 1.284 1.649 1.966 2.250 2.336 2.404 2.509 2.588 2.651 2.823 400

450 1.283 1.648 1.965 2.249 2.335 2.403 2.508 2.587 2.650 2.821 450

500 1.283 1.648 1.965 2.248 2.334 2.402 2.507 2.586 2.649 2.820 500
550 1.283 1.648 1.964 2.248 2.333 2.401 2.506 2.585 2.648 2.818 550

600 1.283 1.647 1.964 2.247 2.333 2.401 2.505 2.584 2.647 2.817 600
650 1.283 1.647 1.964 2.247 2.332 2.400 2.505 2.583 2.646 2.817 650
700 1.283 1.647 1.963 2.246 2.332 2.400 2.504 2.583 2.646 2.816 700

750 1.283 1.647 1.963 2.246 2.331 2.399 2.504 2.582 2.645 2.815 750

800 1.283 1.647 1.963 2.246 2.331 2.399 2.503 2.582 2.645 2.815 800

900 1.282 1.647 1.963 2.245 2.330 2.398 2.503 2.581 2.644 2.814 900

1000 1.282 1.646 1.962 2.245 2.330 2.398 2.502 2.581 2.644 2.813 1000

∞ 1.282 1.645 1.960 2.241 2.326 2.394 2.498 2.576 2.638 2.807 ∞
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J.4 Cumulative Chi-Square Distribution

Table J.4 summarizes partial CDFs for χ2 distributions with degrees of freedom from 1 to 60, where

F (χ2) = P (X2 ≤ χ2).

Each row represents a different χ2 distribution and each column a different CDF from 0.005 to 0.995.

The body of the table presents χ2 values associated with these various probabilities. For example, if

n = 20, then df = 19 and χ2
0.025 = 8.91 is found as the intersection of row “19” and column “0.025.” For a

χ2 distribution with 19 degrees of freedom P (χ2 ≤ 8.91) = 0.025. χ2
0.90 = 27.2 found as the intersection

of row “19” and column “0.90” implies P (χ2 ≤ 27.2) = 0.90. For more examples see Chapters 4 and 6.
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df 0.005 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 0.995

1 0.0000393 0.000157 0.000982 0.00393 0.0158 2.71 3.84 5.02 6.63 7.88

2 0.0100 0.0201 0.0506 0.103 0.211 4.61 5.99 7.38 9.21 10.6
3 0.0717 0.115 0.216 0.352 0.584 6.25 7.81 9.35 11.3 12.8

4 0.207 0.297 0.484 0.711 1.06 7.78 9.49 11.1 13.3 14.9

5 0.412 0.554 0.831 1.15 1.61 9.24 11.1 12.8 15.1 16.7

6 0.676 0.872 1.24 1.64 2.20 10.6 12.6 14.4 16.8 18.5

7 0.989 1.24 1.69 2.17 2.83 12.0 14.1 16.0 18.5 20.3

8 1.34 1.65 2.18 2.73 3.49 13.4 15.5 17.5 20.1 22.0
9 1.73 2.09 2.70 3.33 4.17 14.7 16.9 19.0 21.7 23.6

10 2.16 2.56 3.25 3.94 4.87 16.0 18.3 20.5 23.2 25.2

11 2.60 3.05 3.82 4.57 5.58 17.3 19.7 21.9 24.7 26.8
12 3.07 3.57 4.40 5.23 6.30 18.5 21.0 23.3 26.2 28.3

13 3.57 4.11 5.01 5.89 7.04 19.8 22.4 24.7 27.7 29.8

14 4.07 4.66 5.63 6.57 7.79 21.1 23.7 26.1 29.1 31.3
15 4.60 5.23 6.26 7.26 8.55 22.3 25.0 27.5 30.6 32.8

16 5.14 5.81 6.91 7.96 9.31 23.5 26.3 28.8 32.0 34.3

17 5.70 6.41 7.56 8.67 10.1 24.8 27.6 30.2 33.4 35.7
18 6.26 7.01 8.23 9.39 10.9 26.0 28.9 31.5 34.8 37.2
19 6.84 7.63 8.91 10.1 11.7 27.2 30.1 32.9 36.2 38.6
20 7.43 8.26 9.59 10.9 12.4 28.4 31.4 34.2 37.6 40.0

21 8.03 8.90 10.3 11.6 13.2 29.6 32.7 35.5 38.9 41.4

22 8.64 9.54 11.0 12.3 14.0 30.8 33.9 36.8 40.3 42.8
23 9.26 10.2 11.7 13.1 14.8 32.0 35.2 38.1 41.6 44.2

24 9.89 10.9 12.4 13.8 15.7 33.2 36.4 39.4 43.0 45.6

25 10.5 11.5 13.1 14.6 16.5 34.4 37.7 40.6 44.3 46.9

26 11.2 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6 48.3

27 11.8 12.9 14.6 16.2 18.1 36.7 40.1 43.2 47.0 49.6

28 12.5 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3 51.0
29 13.1 14.3 16.0 17.7 19.8 39.1 42.6 45.7 49.6 52.3
30 13.8 15.0 16.8 18.5 20.6 40.3 43.8 47.0 50.9 53.7
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df 0.005 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 0.995

31 14.5 15.7 17.5 19.3 21.4 41.4 45.0 48.2 52.2 55.0

32 15.1 16.4 18.3 20.1 22.3 42.6 46.2 49.5 53.5 56.3
33 15.8 17.1 19.0 20.9 23.1 43.7 47.4 50.7 54.8 57.6

34 16.5 17.8 19.8 21.7 24.0 44.9 48.6 52.0 56.1 59.0

35 17.2 18.5 20.6 22.5 24.8 46.1 49.8 53.2 57.3 60.3

36 17.9 19.2 21.3 23.3 25.6 47.2 51.0 54.4 58.6 61.6

37 18.6 20.0 22.1 24.1 26.5 48.4 52.2 55.7 59.9 62.9

38 19.3 20.7 22.9 24.9 27.3 49.5 53.4 56.9 61.2 64.2
39 20.0 21.4 23.7 25.7 28.2 50.7 54.6 58.1 62.4 65.5

40 20.7 22.2 24.4 26.5 29.1 51.8 55.8 59.3 63.7 66.8

41 21.4 22.9 25.2 27.3 29.9 52.9 56.9 60.6 64.9 68.1
42 22.1 23.7 26.0 28.1 30.8 54.1 58.1 61.8 66.2 69.3

43 22.9 24.4 26.8 29.0 31.6 55.2 59.3 63.0 67.5 70.6

44 23.6 25.1 27.6 29.8 32.5 56.4 60.5 64.2 68.7 71.9
45 24.3 25.9 28.4 30.6 33.4 57.5 61.7 65.4 70.0 73.2

46 25.0 26.7 29.2 31.4 34.2 58.6 62.8 66.6 71.2 74.4

47 25.8 27.4 30.0 32.3 35.1 59.8 64.0 67.8 72.4 75.7
48 26.5 28.2 30.8 33.1 35.9 60.9 65.2 69.0 73.7 77.0

49 27.2 28.9 31.6 33.9 36.8 62.0 66.3 70.2 74.9 78.2
50 28.0 29.7 32.4 34.8 37.7 63.2 67.5 71.4 76.2 79.5

51 28.7 30.5 33.2 35.6 38.6 64.3 68.7 72.6 77.4 80.7

52 29.5 31.2 34.0 36.4 39.4 65.4 69.8 73.8 78.6 82.0
53 30.2 32.0 34.8 37.3 40.3 66.5 71.0 75.0 79.8 83.3

54 31.0 32.8 35.6 38.1 41.2 67.7 72.2 76.2 81.1 84.5

55 31.7 33.6 36.4 39.0 42.1 68.8 73.3 77.4 82.3 85.7

56 32.5 34.3 37.2 39.8 42.9 69.9 74.5 78.6 83.5 87.0

57 33.2 35.1 38.0 40.6 43.8 71.0 75.6 79.8 84.7 88.2

58 34.0 35.9 38.8 41.5 44.7 72.2 76.8 80.9 86.0 89.5
59 34.8 36.7 39.7 42.3 45.6 73.3 77.9 82.1 87.2 90.7

60 35.5 37.5 40.5 43.2 46.5 74.4 79.1 83.3 88.4 92.0

61 36.3 38.3 41.3 44.0 47.3 75.5 80.2 84.5 89.6 93.2
62 37.1 39.1 42.1 44.9 48.2 76.6 81.4 85.7 90.8 94.4

63 37.8 39.9 43.0 45.7 49.1 77.7 82.5 86.8 92.0 95.6

64 38.6 40.6 43.8 46.6 50.0 78.9 83.7 88.0 93.2 96.9
65 39.4 41.4 44.6 47.4 50.9 80.0 84.8 89.2 94.4 98.1

66 40.2 42.2 45.4 48.3 51.8 81.1 86.0 90.3 95.6 99.3

67 40.9 43.0 46.3 49.2 52.7 82.2 87.1 91.5 96.8 100.6
68 41.7 43.8 47.1 50.0 53.5 83.3 88.3 92.7 98.0 101.8

69 42.5 44.6 47.9 50.9 54.4 84.4 89.4 93.9 99.2 103.0
70 43.3 45.4 48.8 51.7 55.3 85.5 90.5 95.0 100.4 104.2

71 44.1 46.2 49.6 52.6 56.2 86.6 91.7 96.2 101.6 105.4
72 44.8 47.1 50.4 53.5 57.1 87.7 92.8 97.4 102.8 106.6
73 45.6 47.9 51.3 54.3 58.0 88.8 93.9 98.5 104.0 107.9
74 46.4 48.7 52.1 55.2 58.9 90.0 95.1 99.7 105.2 109.1

75 47.2 49.5 52.9 56.1 59.8 91.1 96.2 100.8 106.4 110.3

76 48.0 50.3 53.8 56.9 60.7 92.2 97.4 102.0 107.6 111.5

77 48.8 51.1 54.6 57.8 61.6 93.3 98.5 103.2 108.8 112.7

78 49.6 51.9 55.5 58.7 62.5 94.4 99.6 104.3 110.0 113.9
79 50.4 52.7 56.3 59.5 63.4 95.5 100.7 105.5 111.1 115.1

80 51.2 53.5 57.2 60.4 64.3 96.6 101.9 106.6 112.3 116.3
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J.5 Critical Values of the q Statistic for the Student-Newman-Keuls Test

Table J.5 is a tabulation of critical values for the Student-Newman-Keuls test used to separate means in
a Model I ANOVA with a significant global F test. To find the critical values for the SNK q statistics
choose either α = 0.05 or α = 0.01. Find the number of means (k) in rank order to be compared at
the top of the table and the degrees of freedom (ν) for MSError as a row value. As with earlier tables if
the degrees of freedom are not found, be conservative, and use the closest lower value. For example, at
α = 0.05 with 35 degrees of freedom in MSError and five means to separate, the critical values would be

k 2 3 4 5

q c.v. 2.888 3.486 3.845 4.102

To compare the first and the last of 5 ordered means use 4.102 as the critical value for the q statistic.
To compare any two adjacent means use 2.888 as the critical value for the q statistic. For means separated
by one other mean use 3.486 as the critical value for the q statistic. In general, k is the number of means
in the range of interest. For further examples, see Appendix E.1.

J.6 Critical Values for Duncan’s Multiple Range Test

The value of rp for Duncan’s Multiple Range test is the same as the q statistic for the Student-Newman-
Keuls test. To find rp use the degrees of freedom from MSError in the ANOVA to locate the row and the
number of ordered means to locate the column. For comparison of four means in an ANOVA with 35
degrees of freedom in MSError use the row marked 30 (next lower value since 35 is not in the table). The
rp values would be 2.888, 3.035, and 3.131. Multiplied by the appropriate standard error these values
generate the SSRp’s that are the critical values for the DMRT. For further examples, see Appendix E.2.

α = 0.05

k

v 2 3 4 5 6 7 8 9 10

1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07

2 6.085 8.331 9.798 10.88 11.74 12.44 13.03 13.54 13.99
3 4.501 5.910 6.825 7.502 8.037 8.478 8.853 9.177 9.462

4 3.927 5.040 5.757 6.287 6.707 7.053 7.347 7.602 7.826

5 3.635 4.602 5.218 5.673 6.033 6.330 6.582 6.802 6.995

6 3.461 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.493

7 3.344 4.165 4.681 5.060 5.359 5.606 5.815 5.998 6.158

8 3.261 4.041 4.529 4.886 5.167 5.399 5.597 5.767 5.918
9 3.199 3.949 4.415 4.756 5.024 5.244 5.432 5.595 5.739

10 3.151 3.877 4.327 4.654 4.912 5.124 5.305 5.461 5.599

11 3.113 3.820 4.256 4.574 4.823 5.028 5.202 5.353 5.487

12 3.082 3.773 4.199 4.508 4.751 4.950 5.119 5.265 5.395
13 3.055 3.735 4.151 4.453 4.690 4.885 5.049 5.192 5.318
14 3.033 3.702 4.111 4.407 4.639 4.829 4.990 5.131 5.254

15 3.014 3.674 4.076 4.367 4.595 4.782 4.940 5.077 5.198

16 2.998 3.649 4.046 4.333 4.557 4.741 4.897 5.031 5.150
17 2.984 3.628 4.020 4.303 4.524 4.705 4.858 4.991 5.108

18 2.971 3.609 3.997 4.277 4.495 4.673 4.824 4.956 5.071

19 2.960 3.593 3.977 4.253 4.469 4.645 4.794 4.924 5.038
20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008

24 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915

30 2.888 3.486 3.845 4.102 4.302 4.464 4.602 4.720 4.824
40 2.858 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735

60 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646

120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560
∞ 2.772 3.314 3.633 3.858 4.030 4.170 4.286 4.387 4.474



SECTION J.6: Critical Values for Duncan’s Multiple Range Test 103

α = 0.01

k

v 2 3 4 5 6 7 8 9 10

1 90.03 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6
2 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69

3 8.261 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69

4 6.512 8.120 9.173 9.958 10.58 11.10 11.55 11.93 12.27
5 5.702 6.976 7.804 8.421 8.913 9.321 9.669 9.972 10.24

6 5.243 6.331 7.033 7.556 7.973 8.318 8.613 8.869 9.097

7 4.949 5.919 6.543 7.005 7.373 7.679 7.939 8.166 8.368
8 4.746 5.635 6.204 6.625 6.960 7.237 7.474 7.681 7.863

9 4.596 5.428 5.957 6.348 6.658 6.915 7.134 7.325 7.495

10 4.482 5.270 5.769 6.136 6.428 6.669 6.875 7.055 7.213

11 4.392 5.146 5.621 5.970 6.247 6.476 6.672 6.842 6.992

12 4.320 5.046 5.502 5.836 6.101 6.321 6.507 6.670 6.814

13 4.260 4.964 5.404 5.727 5.981 6.192 6.372 6.528 6.667
14 4.210 4.895 5.322 5.634 5.881 6.085 6.258 6.409 6.543

15 4.168 4.836 5.252 5.556 5.796 5.994 6.162 6.309 6.439

16 4.131 4.786 5.192 5.489 5.722 5.915 6.079 6.222 6.349

17 4.099 4.742 5.140 5.430 5.659 5.847 6.007 6.147 6.270

18 4.071 4.703 5.094 5.379 5.603 5.788 5.944 6.081 6.201
19 4.046 4.670 5.054 5.334 5.554 5.735 5.889 6.022 6.141

20 4.024 4.639 5.018 5.294 5.510 5.688 5.839 5.970 6.087

24 3.956 4.546 4.907 5.168 5.374 5.542 5.685 5.809 5.919
30 3.889 4.455 4.799 5.048 5.242 5.401 5.536 5.653 5.756

40 3.825 4.367 4.696 4.931 5.114 5.265 5.392 5.502 5.559

60 3.762 4.282 4.595 4.818 4.991 5.133 5.253 5.356 5.447
120 3.702 4.200 4.497 4.709 4.872 5.005 5.118 5.214 5.299

∞ 3.643 4.120 4.403 4.603 4.757 4.882 4.987 5.078 5.157


